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ABSTRACT
The key to personalized search is modeling user intents to tailor
returned results for different users. Existing personalized methods
mainly focus on learning implicit user interest vectors. In this paper,
we propose ExpliPS, a personalized search model that explicitly
incorporates query subtopics into personalization. It models the
user’s current intent by estimating the user’s preference over the
subtopics of the current query and personalizes the results over
the weighted subtopics. We think that in such a way, personal-
ized search could be more explainable and stable. Specifically, we
first employ a semantic encoder to learn the representations of the
user’s historical behaviours. Then with the historical behaviour
representations, a subtopic preference encoder is devised to predict
the user’s subtopic preferences on the current query. Finally, we
rerank the candidates via a subtopic-aware ranker that prioritizes
the documents relevant to the user-preferred subtopics. Experimen-
tal results show our model ExpliPS outperforms the state-of-the-art
personalized web search models with explainable and stable results.
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1 INTRODUCTION
Nowadays, search engine is an important way to obtain information
from the Web. To whoever enters the same query, existing search
engines usually return the same ranked document list, solely based
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Figure 1: Comparison of previous personalized searchmodels
and our method incorporating explicit subtopics.

on the relevance of the candidate documents to the query. However,
queries are often short and ambiguous (e.g.“java”), and may contain
multiple specific meanings (e.g.“java language programming” and
“java island”). Different users issuing the same query may have
varying intents due to their diverse backgrounds and interests.
Returning the same results to all users under such a condition will
make some users unsatisfied. Personalized search is one of the
mainstream solutions. Its central idea is to model a user’s interest
from her search histories, and tailor result rankings based on how
satisfied the candidate document is with the user’s interest.

Till now, many personalized search models have been proposed.
They employ either unsupervised methods [3, 9, 10, 12, 15, 30, 39,
40] or neural networks [17, 23, 24, 44, 48–50] to learn an implicit
representation of user interests from her search histories. Then the
original search results are reranked by comparing the similarity
between the learned user interest vector and each candidate docu-
ment. Although these methods are proved to be effective, they have
a common problem: the inference process likes a “black box”, which
is reflected from two angles. First, learning user interests by simply
aggregating user histories makes it hard to control the selection of
valuable historical behaviours. Some noisy historical behaviours
are irrelevant to either the user’s long-term interests or her current
intent. Although some recent studies [17] use the current query
to weight historical behaviours via the attention mechanism, de-
ciding what information should be kept or removed based on the
ambiguous issued query remains problematic. Second, most studies
model user interest in the form of representation vectors. With this
implicit interest representation, it is hard to explain the real intent
the user has, and which specific information the user is looking for.

In this paper, we want to go beyond the implicit user interest
representation, and propose to leverage query intents in an explicit
manner. As there might be multiple different information needs
under the same query, we adopt the term “subtopics”, which is
widely used in search result diversification [1, 22, 28], to stand for
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various user intents by the query.We propose introducing subtopics
into personalized search, and explicitly model the user’s subtopic
preferences of the current query to identify her real intent. Results
are thereby ranked over the personalized subtopics: the documents
relevant to the subtopics the user prefers will be ranked higher. This
will make the personalization more explainable because we can
knowwhy some results are ranked higher and which subtopics they
are relevant to. It also potentially improves the ranking stability
since results are personalized based on the query subtopics, and
the noise in the historical behaviours is harder to influence the
ranking. We present the comparison of our method with existing
personalized methods that employ implicit interests in Fig. 1.

Specifically, we propose a personalized search framework, namely
ExpliPS, to explicitly incorporate subtopics to understand user in-
tents and tailor search results. To exploit query subtopics reason-
ably, we further provide a derivation function to compute subtopic-
based ranking scores. This derivation guides the construction of
our model. Concretely, ExpliPS contains three core modules, i.e., a
semantic encoder, a subtopic preference encoder, and a subtopic-
aware personalized ranker. Its workflow is as follows: Firstly, the
semantic encoder is employed to produce the basic representa-
tion of a query, a candidate document, or a subtopic. Secondly,
given the user’s histories, the subtopic preference encoder, a
transformer-encoder-based module, is applied to predict the user’s
preference over subtopics of the current query. Based on our deriva-
tion, we devise a subtopic-aware attention masking for this module
to capture reliable preference signals. Finally, the subtopic-aware
personalized ranker estimates the personalized ranking score
of each document. It computes the similarity scores of documents
with each subtopic and weights them up by subtopic preferences.

Nevertheless, the above pipeline is challenging to predict precise
subtopic preferences, since we have no ground truth for this task.
To solve this problem, a pseudo label model is devised to extract
the pseudo labels of users’ subtopic preferences from their click
feedback for training data. We design an auxiliary task to narrow
the gap between predicted preferences and pseudo labels. It helps
estimate the user intents more accurately, and boosts the final
ranking quality. Thus, the training objectives of our model consist
of the personalized ranking task and the preference prediction task.

Note that the core idea of the paper is explicitly modeling user-
preferred subtopics in personalized search. The primary goal is
improving ranking quality, and subtopic mining is beyond our
scope. We simply take google suggestions, which are widely used
in search result diversification [19, 20, 22, 25, 28], as query subtopics.
Nevertheless, our work has nothing to do with diversification: we
optimize solely for personalized ranking. It is the first time that
explicit subtopics are used together with the state-of-the-art Trans-
former based user profiling and personalized web search models.

We experiment with the AOL search log dataset. Experimen-
tal results show that our model can significantly outperform the
existing personalized models with stable and explainable results.

Our main contributions in the paper are:
(1) We propose to exploit subtopics to explicitly model user in-

tents for personalized search and develop a personalized model,
ExpliPS. Though subtopics are widely used in search result diversi-
fication, this is the first time to be employed in personalized search.

(2) According to our derivation of calculating personalized rank-
ing scores based on subtopics, we adopt a subtopic-aware attention
masking mechanism to the subtopic preference encoder for model-
ing reliable preference signals.

(3) We design an auxiliary model to take intent signals from
user feedback as pseudo labels, which guides the prediction of the
subtopics preferences.

2 RELATEDWORK
2.1 Personalized Search Models
Personalized search has been a popular topic due to the effectiveness
of customizing results for different users. Traditional models mainly
rely on heuristic rules [15, 35] and manual features [4, 38, 40]. For
example, Thanh et al. [39] employed Latent Dirichlet Allocation
(LDA) [6] to construct user profiles in the topic space. With the ap-
pearance of the advanced learning to rank model LambdaMART [8],
some supervised personalized search models [5, 38, 41] achieved
significant improvement over the previous unsupervised ones.

Recently, many neural personalized search models [17, 23, 24, 44,
47–50] are proposed. They have shown a superior ability to model
implicit user interests in high-dimension feature space. The earliest
one among them, HRNN was proposed to build dynamic user pro-
files by sequentially modeling the user histories via a hierarchical
RNN with Query-aware Attention [17]. After that, researchers have
employed many different techniques, such as generative adversarial
network [23], reinforcement learning [45], contrastive learning [50],
etc., to improve the quality of user profiling.

Although these models are proved to be effective in facilitating
the search results personalization, they commonly pay attention to
modeling the dense vector of user interests. Most of them neglected
the user’s preference on explicit query subtopics, which could im-
prove the robustness and interpretability of personalized search. In
this paper, we make a preliminary exploration of this direction.

2.2 Application of Subtopics
Previous studies [14, 15, 32] revealed that an ambiguous query
can be decomposed into multiple intents or subtopics. A user is
usually interested in some subtopics but dislikes the left. Thus,
understanding query intent and mining subtopics play a crucial
role in solving the query ambiguity problem. Numerous works have
developed various ways to mine query subtopics [11, 16, 18, 34, 43,
46]. However, mining subtopics is not the focus of our paper. We
simply use google suggestions as subtopics, which is a common
way in other researches [19, 20, 22, 25, 28].

Subtopics have been extensively used in search result diversifi-
cation [1, 19, 20, 25, 28], which aims to diversify ranking results by
covering aspects of issued queries as much as possible. However,
the goal of personalization is modeling user interests to customize
results for each user. These two tasks have different learning targets.

At present, there is a lack of methods that consider explicit query
subtopics to enhance personalization. Note that there exists some
traditional personalizedmethods [29, 31, 33, 41] that learn the user’s
profiles based on topical category or ontology. Nevertheless, these
are not the subtopics we discussed in this paper. Several studies [26,
36] introduce explicit diversification into personalized search, while
they mainly aim at enhancing the diversity of personalized results,
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which is different from the target of our work: we optimize solely
for personalized ranking.

3 PRELIMINARIES
Personalized search has been an effective way to provide users with
desired search results. However, existing works mostly focus on
modeling implicit user interests, which may cause unstable and un-
explainable results. As we stated in Section 1, explicitly considering
the subtopics is conducive to clarifying the user’s specific intents,
hence improving the quality and interpretability of the ranking
results. Consequently, we propose a personalized framework that
explicitly incorporates query subtopics to comprehend user intent
and personalize results. We first define the problem and provide
some preliminary derivations as below.

3.1 Problem Definition
When a user 𝑢 enters a query 𝑞 in the search box, the search engine
will first return a batch of candidate documents 𝐷 . A personalized
search model is supposed to rerank the candidates based on current
query 𝑞 and the user’s historical search behaviours 𝐻 . Specifically,
𝐻 = {(𝑞𝑖 , 𝐷𝑖 ) |𝑖 ∈ [1, 𝑛]}, where 𝑛 is the amount of historical issued
queries, 𝑞𝑖 is the 𝑖-th query and 𝐷𝑖 denotes its clicked document
set. Previous studies [17, 48, 50] calculate the candidate 𝑑’s final
score, where 𝑑 ∈ 𝐷 , by using an aggregator agg() to combine the
personalized score Ps(𝑑 |𝑞,𝑢) and the ad-hoc score Rs(𝑑 |𝑞):

score(𝑑 |𝑞,𝑢) = agg (Ps (𝑑 |𝑞,𝑢) , Rs(𝑑 |𝑞)) , (1)

The personalized score is mostly computed by the similarity be-
tween the document and implicit user interests. We call it implicit
score, and denote it as sim, i.e., Ps (𝑑 |𝑞,𝑢) = sim.

Generally, the personalized score can be viewed as the approx-
imation of the probability that document 𝑑 is relevant given the
current user and query, i.e., Ps (𝑑 |𝑞,𝑢) ∝ 𝑝 (𝑑 |𝑞,𝑢).1 In previous,
sim is an implicit approximation as its production involves no
subtopic. In this work, we introduce an explicit score sex, which
explicitly approximates 𝑝 (𝑑 |𝑞,𝑢) by considering query subtopics.
Thus, the sex and sim approximate 𝑝 (𝑑 |𝑞,𝑢) from explicit and
implicit perspectives, i.e., sex ∝ 𝑝 (𝑑 |𝑞,𝑢) and sim ∝ 𝑝 (𝑑 |𝑞,𝑢).

Therefore, suppose 𝑄𝑠 = {𝑠𝑖 |𝑘 ∈ [1, 𝑘]} is the current query’s
subtopic set obtained by google suggestion, we convert Eq. (1) into:

score(𝑑 |𝑞,𝑢) = agg(Ps(𝑑 |𝑞,𝑢,𝑄𝑠 ), Rs(𝑑 |𝑞)), (2)

where Ps(𝑑 |𝑞,𝑢,𝑄𝑠 ) is the personalized score that explicitly con-
siders query subtopics. We use two learnable parameters 𝛼, 𝛽 to
linearly combine sex, sim for ensuring Ps(𝑑 |𝑞,𝑢,𝑄𝑠 ) ∝ 𝑝 (𝑑 |𝑞,𝑢).

Ps(𝑑 |𝑞,𝑢,𝑄𝑠 ) = 𝛼sex + 𝛽sim . (3)

Next, we will provide the explicit derivation of 𝑝 (𝑑 |𝑞,𝑢), i.e., the
estimation methods of sex, by introducing subtopic variables.

1Since the ranking task emphasizes relative values between scores rather than absolute
values, it’s unnecessary to limit ranking scores to the interval of [0, 1], but proportional
to the probability. Thus, the approximation of this paper is proportionate.

3.2 Explicit Derivation
Without loss of generality, 𝑝 (𝑑 |𝑞,𝑢) can be derived by introducing
variables of query subtopics, 𝑠𝑖 , as follows:

𝑝 (𝑑 |𝑞,𝑢) =
∑︁

𝑠𝑖 ∈𝑄𝑠

𝑝 (𝑑, 𝑠𝑖 |𝑞,𝑢) =
∑︁

𝑠𝑖 ∈𝑄𝑠

𝑝 (𝑑 |𝑠𝑖 , 𝑞,𝑢)𝑝 (𝑠𝑖 |𝑞,𝑢). (4)

We view 𝑝 (𝑠𝑖 |𝑞,𝑢) as the user 𝑢’s preference degree on subtopic
𝑠𝑖 given query 𝑞. 𝑝 (𝑑 |𝑠𝑖 , 𝑞,𝑢) is the relevance of 𝑑 to the subtopic
𝑠𝑖 when𝑢 issues 𝑞. Moreover, the semantic range of query subtopics
are contained by the one of current query, whichmeans that𝑝 (𝑠𝑖 , 𝑞) =
𝑝 (𝑠𝑖 ), hence 𝑝 (𝑑 |𝑠𝑖 , 𝑞,𝑢) = 𝑝 (𝑑 |𝑠𝑖 , 𝑢).2 Furthermore, assuming that
the user 𝑢 is independent of the query 𝑞, the 𝑝 (𝑠𝑖 |𝑞,𝑢) can be sim-
plified as below,

𝑝 (𝑠𝑖 |𝑞,𝑢) =
𝑝 (𝑠𝑖 , 𝑞,𝑢)
𝑝 (𝑞,𝑢) =

𝑝 (𝑠𝑖 , 𝑢)
𝑝 (𝑞)𝑝 (𝑢) =

𝑝 (𝑠𝑖 |𝑢)
𝑝 (𝑞) ∝ 𝑝 (𝑠𝑖 |𝑢), (5)

where 𝑝 (𝑞) is constant for a certain search scenario. Therefore, the
explicit derivation of 𝑝 (𝑑 |𝑞,𝑢) can be represented as,

𝑝 (𝑑 |𝑞,𝑢) ∝
∑︁

𝑠𝑖 ∈𝑄𝑠

𝑝 (𝑑 |𝑠𝑖 , 𝑢)𝑝 (𝑠𝑖 |𝑢). (6)

This derivation can provide guidance for our model construction,
which will be demonstrated in Section 4.

4 SUBTOPIC-AWARE PERSONALIZATION
In this section, we provide the details of our model, which is guided
by the derivation to provide reliable personalized ranking results.
The structure of our proposed ranking model is displayed in Fig. 2.
First, the semantic encoder is applied to yield the embeddings of
historical behaviours, the current query, subtopics, and candidate
documents. Then we employ the subtopic preference encoder to
predict the user’s explicit subtopic preferences and implicit inter-
ests from her historical behaviours. Finally, the subtopic-aware
personalized ranker computes the ranking score of candidates by
explicitly incorporating user’s preferences on query subtopics.

The details of each step are depicted as follows.

4.1 Semantic Encoder
Previous studies [44, 48] illustrated that users’ historical search
behaviours (i.e., queries and clicked documents) are favorable for
inferring their interest and current intent. Most personalized search
models take the behaviour representations as input to learn user
interests. In this paper, we adopt transformer encoder [37] to embed
the behaviours into semantic representations, the effectiveness of
which has been proved in recent works [25, 37, 48].

Specifically, take the 𝑖-th historical behaviour (𝑞𝑖 , 𝐷𝑖 ) for ex-
ample. We concatenate the word embeddings of the query 𝑞𝑖 and
clicked documents 𝐷𝑖 with “[SEP]” as the separator to construct
the input sentence, i.e., 𝑆𝑖 .

𝑆𝑖 = 𝑞𝑖 [SEP]𝑑𝑖,1 [SEP] ...[SEP]𝑑𝑖,𝑝 , (7)

where 𝑑𝑖, 𝑗 ∈ 𝐷𝑖 ∀𝑗 ∈ [1, 𝑝] and 𝑝 is the number of clicked docu-
ments. Further, type embeddings are introduced for distinguishing

2Though there may be a few subtopics containing the same contents under different
queries, we view them as different subtopics to ensure the correctness of formulas.
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Figure 2: The architecture of our proposed framework, where candidate embeddings are also yielded by the semantic encoder,
but we have no space to display it. The up-right part is used to produce pseudo subtopic labels for subtopic preferences. The
up-left part depicts the attention masking employed by our model. The bottom-left shows the prediction of subtopic preference.

the different types of inputs. We represent the type embedding
sentence by 𝑇𝑖 . Thus, we encode the 𝑖-th historical behaviour by

I𝑖 = Avg (Trm (𝑆𝑖 +𝑇𝑖 )) , (8)

where Trm() denotes the transformer encoder with 𝐿 layers and
Avg() is average pooling. I𝑖 denotes the representation of user
intents at 𝑖-th historical behaviour.

Meanwhile, we employ the same structure to yield representa-
tions of the current query, a candidate document, and a subtopic,
and get q, d, s𝑖 , respectively.

4.2 Subtopic Preference Encoder
Having representations of the user’s historical behaviours, we need
a higher-level structure to capture the user’s preference signals from
them to clarify the user’s current intent. Previous works [17, 48, 50]
implemented it by modeling the implicit user interest. Though it
is beneficial for personalization, solely exploiting implicit interest
is sensitive to noisy histories and hard to provide explainable user
intents. Therefore, we devise a subtopic preference encoder (SPE) to
capture the user’s explicit subtopic preference and implicit interest,
hence providing clear and precise user intents.

Furthermore, since we design our ranking model based on the
derivation, the document relevance to subtopics, 𝑝 (𝑑 |𝑠𝑖 , 𝑢), depen-
dents on the current user. Thus the 𝑝 (𝑑 |𝑠𝑖 , 𝑢) should be estimated
in the context of the user. In other words, the representations of
subtopics should consider the user’s historical behaviors, hence
estimating 𝑝 (𝑑 |𝑠𝑖 , 𝑢) by their similarity with candidate documents.
We call these subtopic representations context-aware subtopics.

Consequently, the SPE module takes embeddings of the current
query, subtopics, and historical behaviours as input and produces
the explicit subtopic preferences, implicit interests, and context-
aware subtopics for the subsequent processes.

4.2.1 Context-aware subtopics and implicit interests. Since the trans-
former encoder [37] can refine the input representations by relevant
contextual information, we base it to construct the SPE. However,
the full attention is inapposite to the SPE as there are some in-
visible requirements between different input terms according to

our derivation of Eq. (6). Thus, we propose an attention masking
mechanism, namely subtopic-aware mask, to capture more reliable
representations of inputs by the following rules.

Mask between the current query and subtopics. As we intro-
duced in Section 3.2 that Eq. (4) and (6) are both reasonable for our
model to compute the explicit personalized score. The difference is
that for the former, the context to learn the subtopic representations
is the current query 𝑞 and the user histories 𝑢, while the latter is
only the user histories. In this paper, we follow the latter and intro-
duce the attention mask on the current query for its subtopics. The
reason is that the information flow from the query to its subtopics
is useless because the query contains similar but more general in-
formation than subtopics. If the query is visible to subtopics, it will
dominate the subtopics’ attention and restrain the attention of user
histories. Similarly, we mask subtopics for the query to capture the
implicit user interests that involve no subtopics.

Mask within subtopics. Note that we estimate the relevance of
document 𝑑 to subtopic 𝑠𝑖 , i.e., 𝑝 (𝑑 |𝑠𝑖 , 𝑢), via the similarity between
the document and the subtopic’s context-aware representation.
Since 𝑝 (𝑑 |𝑠𝑖 , 𝑢) involves none of other subtopics, subtopics should
be invisible to each other when learning their context-aware rep-
resentations. Our qualitative analysis of this rule is that subtopics
represent distinct aspects of the current query, while interactions
within them may fuzzy the discrepancy between their representa-
tions, which is harmful to subtopics’ representativeness.

The masked attention matrix is visualized in the up-right part of
Fig. 2. We build an input sequence based on the representations of
the current query, its subtopics, and historical behaviours, then fed
it into the transformer encoder with this mask strategy, which is
called masked transformer encoder. The output of the query is the
user’s implicit interest, q𝑢 , i.e.,

q𝑢 = MaskTrm𝑛+1, ( [I1, ..., I𝑛, q, s1, ..., s𝑘 ]) , (9)

whereMaskTrm() denotes the masked transformer encoder with 𝐿
layers, the superscript, e.g., 𝑛 + 1, is the output index. The outputs
of subtopics are their context-aware representations, s𝑢

𝑖
, 𝑖 ∈ [1, 𝑘].

s𝑢𝑖 = MaskTrm𝑛+1+𝑖 ( [I1, ..., I𝑛, q, s1, ..., s𝑘 ]) , (10)
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4.2.2 Explicit subtopic preferences. To generate the user’s specific
intent, we need to predict the user’s preference distribution on the
subtopics of the current query, i.e., 𝑝 (𝑠𝑖 |𝑢). With the assumption
that the user’s preference on a subtopic is reflected by whether the
user has searched the information related to the subtopic, we pro-
pose a preference predictor based on the feature of the transformer
encoder. Specifically, if the user has no relevant histories for the
subtopic 𝑠𝑖 , the transformer layer will gather a lot of noisy informa-
tion from the user histories and change the semantic representation
of the subtopic; otherwise, it will aggregate related histories and
keep semantic. Therefore, the semantic difference between subtopic
representations before and after masked transformer layers can be
used to derive the user’s subtopic preference, i.e.,

𝑝 (𝑠𝑖 |𝑢) = softmax𝑖
(∑︁𝐿−1

𝑙=1
𝑤𝑙 𝑓

(
s𝑢,𝑙
𝑖
, s𝑢,𝑙+1
𝑖

))
, (11)

where s𝑢,𝑙
𝑖

is the representation of the subtopic 𝑠𝑖 at the 𝑙-th layer,
𝑤𝑙 is the trainable parameter denoting the weight of the 𝑙-th layer,
and 𝑓 () is the similarity function, which is implemented based on
a layer-specific matrix W𝑙 , i.e., 𝑓 (x, y) = x𝑇W𝑙y. We show this
process in the bottom-left part of Fig. 2, which takes the 𝐿 = 2 as
an example and visualizes the subtopic 𝑠𝑖 as a representative.

4.3 Subtopic-aware Personalized Ranker.
Based on Eq. (6), we construct a subtopic-aware personalized ranker
to produce the final scores of candidate documents by explicitly
incorporating query subtopics. Specifically, the sex is computed by,

sex =
∑︁𝑘

𝑖=1
𝑝 (𝑠𝑖 |𝑢)sim(d, s𝑢𝑖 ), (12)

where sim() is the cosine similarity function. sim(d, s𝑢
𝑖
) ∝ 𝑝 (𝑑, 𝑠𝑖 , 𝑢)

as the generation of s𝑢
𝑖
involves the user histories. Moreover, consid-

ering 𝑝 (𝑑 |𝑠𝑖 , 𝑢) = 𝑝 (𝑑,𝑠𝑖 ,𝑢 )
𝑝 (𝑠𝑖 ,𝑢 ) , where 𝑝 (𝑠𝑖 , 𝑢) is same for all documents

of the current query 𝑞, we can assume that sim(d, s𝑙
𝑖
) ∝ 𝑝 (𝑑 |𝑠𝑖 , 𝑢).

This assumption is also applicable to later calculations.
To avoid the incomplete coverage of subtopics on query aspects,

we retain the implicit score, which has been verified to be effective in
personalized search. We produce the sim by the following function,

sim = sim(q𝑢 , d) (13)

The personalized score Ps(𝑑 |𝑞,𝑢,𝑄𝑠 ) is yieled by Eq. (3).
Following previous personalized search methods [44, 48–50], we

calculate ad-hoc score, Rs(𝑑 |𝑞) by

Rs(𝑑 |𝑞) = w𝑎
[
KNRM(𝑞𝑤 , 𝑑𝑤); sim(q, d);𝜙 (𝑓𝑞𝑑 )

]𝑇
, (14)

where 𝑞𝑤 , 𝑑𝑤 denote the word embeddings of the current query 𝑞
and candidate 𝑑 . KNRM() is the word-level cross-matching func-
tion proposed by [42]. 𝑓𝑞𝑑 are the relevance features between the
document and the query extracted following previous studies [50].
We utilize a trainable weight w𝑎 ∈ R1×3 to combine them.

Eventually, an MLP layer 𝜙 () is used to generate the final score,

score(𝑑 |𝑞,𝑢,𝑄𝑠 ) = 𝜙 ( [Ps(𝑑 |𝑞,𝑢,𝑄𝑠 ); Rs(𝑑 |𝑞)]) . (15)

Based on the final scores, we can rerank the candidate documents by
explicitly considering the user’s subtopic preference, and enhancing
the quality and interpretability of the ranking results.

4.4 Auxiliary Subtopic Preference Prediction
The above sections described the architecture of our ranking model
which explicitly considers query subtopics for personalized search.
Nevertheless, the only label data available for training the ranking
model is the user’s implicit feedback (e.g., the candidates’ click
label of the current query), without signals of the user’s explicit
subtopic preferences. Optimizing our model solely based on the
learning-to-rank (LTR) task would make it difficult to ensure the
accurate prediction of the user’s subtopic preferences. Motivated
by this, we construct a pseudo label model (PAM) to extract the
user’s preferences signals from her click feedback. We view the
extracted preferences as the pseudo label to assist the training of
our ranking model, which will be introduced in Section 4.5.

Considering that unsupervised methods are hard to capture the
high-order semantic information of the user’s feedback, which is
detrimental to the accuracy of extracted pseudo labels, we construct
the PAM in a supervised manner. Next, we will demonstrate the
extracting process and the training task of PAM.

4.4.1 Extracting process of pseudo labels. To learn the semantic
information from click feedback, we devise the PAM based on the
transformer encoder. Specifically, the input of PAM consists of
the clicked documents of the training query. We denote the word
embedding sentence as 𝑆 , and adopt the transformer encoder Trm()
to learn the user’s current implicit intent, I as below,

I = Avg(Trm(𝑆)). (16)

We view I as the accurate user intent representation since it is
derived from her click feedback. Thus, user’s subtopic preferences
can be directly decoded by,

𝑝 (𝑠𝑖 |𝑢) = softmax𝑖
(
sim

(
𝑊 𝑖 I,𝑊 𝑠s𝑖

))
. (17)

𝑊 𝑖 and𝑊 𝑠 are learnable parameters and 𝑝 (𝑠𝑖 |𝑢) is the pseudo label.

4.4.2 Training of the PAM. Since final scores computed based on
accurate user preferences can yield high-quality ranking results, the
quality of the derived ranking results is evidence of the accuracy
of the user preferences. Thus, we rerank candidate documents
based on extracted preference signals and optimize the PAM by
LTR task. Considering the click feedback maximum reflects the
user intent, the PAM can capture users’ subtopic preferences more
accurately than SPE. Thus, candidates can be ranked based on their
relevance with preferred subtopics, which denote the user’s actual
intents. In this ideal scenario, the relevance of 𝑑 is conditionally
independent of 𝑢 given the 𝑠𝑖 , i.e., 𝑝 (𝑑 |𝑠𝑖 , 𝑢) ∼ 𝑝 (𝑑 |𝑠𝑖 ). By removing
the demand for context-aware subtopics, this derivation allows
for a reduction in model parameters and an increase in training
convergence. Therefore, we compute the explicit score sex by,

sex =
∑︁𝑘

𝑖=1
𝑝 (𝑠𝑖 |𝑢)sim(d, s𝑖 ), (18)

where sim(d, s𝑖 ) ∝ 𝑝 (𝑑 |𝑠𝑖 ). We yield the implicit score by sim =

sim(I, d), and produce the personalized score by Eq. (3). The ad-hoc
score is generated in the same way as Eq. (14). Then, we calculate
the final score of the candidate document by Eq. (15).

We apply a pairwise LTR algorithm, LambdaRank [7] to op-
timize the PAM. The training sample is constructed as follows:
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𝑥 = {𝑞,𝑄𝑠 , 𝑑𝑖 , 𝑑 𝑗 , 𝐷
+},𝑦𝑖 𝑗 ∈ {0, 1}. 𝑑𝑖 and 𝑑 𝑗 denote the pair of posi-

tive and negative documents, 𝑦𝑖 𝑗 is the ground truth that 𝑑𝑖 is more
relevant than 𝑑 𝑗 . 𝑄𝑠 is the query’s subtopics and 𝐷+ represents the
clicked documents. The loss function is computed as below:

L(𝑑𝑖 , 𝑑 𝑗 ) = −𝑦𝑖 𝑗 log(𝑝𝑖 𝑗 ) + (1 − 𝑦𝑖 𝑗 ) (log(𝑝𝑖 𝑗 )), (19)

where 𝑝𝑖 𝑗 = sigmoid(score(𝑑𝑖 ) − score(𝑑 𝑗 )) is the predicted proba-
bility that 𝑑𝑖 is better than 𝑑 𝑗 . score(𝑑𝑖 ) and score(𝑑 𝑗 ) are the final
score of 𝑑𝑖 and 𝑑 𝑗 generated by PAM.

4.4.3 Auxiliary Subtopic Prediction Task. With the well-trained
PAM introduced above, we can extract the pseudo labels of users’
subtopic preferences for assisting us in ranking model training.
We devise an auxiliary task for narrowing the gap between the
predicted user’s subtopic preferences produced by Eq. (11), 𝑝 (𝑠𝑖 |𝑢),
and the pseudo label. Due to the symmetry of JS divergence, we
adopt it to devise the following loss function:

L𝑑𝑖𝑠 = JS (𝑝 (𝑠𝑖 |𝑢), 𝑝 (𝑠𝑖 |𝑢)) . (20)

4.5 Ranking Model Training
The LTR is the main objective of our model to ensure the ranking
quality. For model optimization, we utilize the same pairwise loss
function as PAM, i.e., Eq. (19) . The difference is that the composi-
tions of training samples are 𝑥 = {𝑞,𝑄𝑠 , 𝐻, 𝑑𝑖 , 𝑑 𝑗 }, 𝑦𝑖 𝑗 ∈ {0, 1}, and
the final scores of 𝑑𝑖 and 𝑑 𝑗 are produced by our ranking model
based on Eq. (15). We denote the LTR loss as L𝑟𝑎𝑛𝑘 .

The final loss of our model is generated by the linear combination
of L𝑟𝑎𝑛𝑘 and L𝑑𝑖𝑠 with manually defined weights _1 and _2:

L = _1L𝑟𝑎𝑛𝑘 + _2L𝑑𝑖𝑠 , (21)

5 EXPERIMENT
5.1 Dataset and Evaluation Metrics
The experiments are conducted on a publicly available dataset, AOL
that contains a search log from 1𝑠𝑡 March 2006 to 31𝑠𝑡 May 2006.
The basic statistic information is presented in Table 1. We construct
the dataset following Wasi et al. [2], where all non-alphanumeric
characters of queries are removed. The session boundaries are iden-
tified by the similarity between two consecutive queries. Based on
the above process, each piece of data consists of an anonymous
user ID, a session ID, a query, the uploaded time of the query, and
the corresponding clicked URLs. As AOL only contains clicked doc-
uments, which are viewed as relevant ones, we follow [2] to crawl
document content, dig out candidate documents and reconstruct
the original rank list by BM25 algorithm [27]. 5 candidate docu-
ments are built for the queries in training and validation sets, and
50 candidates for the queries in the test set. The detailed processes
can be referred to at [2]. We view clicked/unclicked documents as
positive/negative samples following existing studies [44, 48, 50]
to build training samples. For ensuring an adequate search log for
each user, the first five weeks are reserved as a background set, and
we view the latest eight weeks as an experimental set, which is di-
vided into the training set, validation set, and test set in a 4:1:1 ratio.
Following [2], we regard the titles of documents as the content.

We select three widely used metrics, MAP, MRR, and P@K to
evaluate the performance of our proposed model. For P@K, we

Table 1: Basic statistical information of the dataset.

Item Value Item Value

# days 91 Avg. query length 2.87
# users 110,439 Avg. session length 2.55
# queries 736,454 Avg. #click per query 1.11
# sessions 279,930 Avg. #subtopic per query 5.22

further consider P@1, P@3, and P@5 in our experiments. Mean-
while, due to the phenomenon that the original rank position of
documents will impact the click behaviour of the user, namely po-
sition bias, we further select a more reliable metric P-Improve [23].
According to [13, 21, 23], we only view the skipped and next non-
clicked documents as irrelevant documents and construct inverse
document pairs. Thus, P-Improve is obtained by computing the
ratio of the correctly ranked inverse pairs.

5.2 Baselines
Except for the original ranking, we select several popular ad-hoc
models and personalized models to compare with our model.

KNRM[42] is a kernel-based method to learn the soft matching
between the tokens of the document and the query.P-Click [15] is a
heuristic personalizationmethod that reranked the candidates of the
refinding queries based on the personal click number. SLTB [5] used
LambdaMART to yield personalized rerank results with 102 features
extracted from the search log.HRNN [17] is a deep-learning-based
model which applied the hierarchical RNN and attention mech-
anism to learn user profiles. PSGAN [23] focused on exploring
high-quality negative examples based on the generative adversarial
network. RPMN [49] constructed the personalized model based on
memory networks to model the multi-level refinding. PEPS [44]
proposed to enhance personalization by constructing a personalized
embedding matrix for each user.HTPS [48] applied the transformer
encoder to integrate the search history for disambiguating the cur-
rent query. PSSL [50] devised four contrastive tasks to pretrain
the personalized model, leading to reliable representations of user
profiles, queries, and documents to improve the personalized search.
It is the state-of-the-art personalized search model.

Our methods includes ExpliPS & ExpliPS-S5. To demonstrate
the robustness of the model for the methods of subtopic mining, we
implement two subtopic choice approaches. One is called ExpliPS,
where all the google suggestions are treated as query subtopics.
And the other randomly selects five google suggestions as query
subtopics, the corresponding model called ExpliPS-S5. We provide
the implement details of our method in Appendix .1.

5.3 Overall Performance
We first compare our model with all baselines, the overall results
are shown in Table 2. Our observations and analysis are as follows:

(1) Comparing with all the baselines, our model ExpliPS
significantly surpasses them in terms of all the metrics with
paired t-test at 𝑝 < 0.05 level. Especially for the state-of-the-art
(SOTA) personalized model, PSSL, our model achieves a 3.00% im-
provement on MAP, and 3.03% improvement on MRR. Additionally,
5.60% promotion on P@1 implies that our model can accurately find
the document that meets the user’s need and rank it atop. Further,
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Table 2: Overall performances of all models. “†” indicates
that the model outperforms the state-of-the-art baseline, i.e.,
PSSL, significantly with paired t-test at p < 0.01 level. The
best results are shown in bold.

Model MAP MRR P@1 P@3 P@5 P-Imp
Adhoc search model
Original .2504 .2596 .1534 .2865 .3522 -
KNRM .4298 .4399 .2718 .5130 .6089 .6633
Previous personalized search model
P-Click .4221 .4305 .3780 .4128 .4431 .1657
SLTB .5113 .5237 .4693 .5244 .5507 .3374
HRNN .5438 .5555 .4841 .5663 .6042 .5927
PSGAN .5480 .5601 .4892 .5741 .6190 .5985
RPMN .5926 .6049 .5322 .6333 .6858 .6586
HTPS .7091 .7251 .6268 .7728 .8300 .7730
PEPS .7127 .7258 .6279 .7902 .8467 .8105
PSSL .7359 .7484 .6431 .8248 .8805 .8278
Personalized search model incorporating query subtopics
ExpliPS-S5 .7498† .7627† .6649† .8325† .8814 .8503†
ExpliPS .7580† .7711† .6791† .8384† .8860† .8517†

the result that ExpliPS achieves a 2.88% improvement on P-Improve
over PSSL verifies its effectiveness from a more credible perspective.
These comparison results confirm that considering query subtopics
and user preference distribution explicitly is beneficial for improv-
ing personalized search quality.

(2) Another version of our model, ExpliPS-S5, significantly
outperforms all the baselines onmost evaluationmetrics.We
find that ExpliPS-S5 achieves 1.88%, 3.39%, and 2.72% promotion on
MAP, P@1, and P-Improve, respectively. It indicates the stability of
our model for different subtopic selections. The improvement on
P@5 is trivial, the reason might be that top-5 is a relatively relaxed
condition, thus the baselines can also perform well. Furthermore,
though ExpliPS-S5 obtains promising growth, ExpliPS still outper-
forms it overall. We analyze it because the random selection may
omit some important subtopics that the user is interested in, the
ranking performance will be affected as a result.

(3)All personalized models improve the quality of original
rankings significantly, which reveals the effectiveness of person-
alization for promoting user satisfaction. The results of P-Click and
RPMN confirm the importance of refinding behaviour, and SLTB
verifies the role of manual relevance features. HRNN and PSGAN
take the advantage of long- and short-term history for modeling
the user profiles, while PSGAN produces greater results due to the
capturing of high-quality negative samples. PEPS and HTPS disam-
biguate the query representation directly based on the contextual
information, and PSSL enhances the personalization by devising
multiple contrastive learning tasks. However, all these personalized
models focus on learning implicit user interests without consider-
ing the explicit subtopic information, thus our model achieves a
higher performance when incorporating them simultaneously.

5.4 Ablation Study
To investigate the effectiveness of the components of our model, we
design some ablation studies and exhibit the results in Table 3. The
design motivations and result discussion are presented as follows.

Table 3: Experimental results of ablation studies.

Model MAP MRR P@1
ExpliPS .7580 - .7711 - .6791 -

w/o EXP .7237 -4.53% .7369 -4.44% .6373 -6.16%
w/o DIS .7457 -1.62% .7588 -1.60% .6640 -2.22%
w/o IMP .7408 -2.27% .7540 -2.22% .6577 -3.15%
w/o PAM .7425 -2.04% .7558 -1.98% .6602 -2.78%
w/o SUP .7444 -1.79% .7578 -1.72% .6636 -2.28%
w/o MASK .7415 -2.18% .7544 -2.17% .6587 -3.00%

PAM .9408 - .9514 - .9146 -

Explicit signal. Our model explicitly considers query subtopics
to clarify the user’s search intent. To verify its influence on rank-
ing performance, we conduct two variants of our model. The first
one drops the explicit score and ranks candidates by aggregating
remaining scores, namely “w/o EXP”. The other one removes the
subtopic preference distribution with a uniform distribution, i.e.,
“w/o DIS”. The results presented in the 2𝑛𝑑 and 3𝑟𝑑 lines illustrate
that both variants underperform our model, even though the second
one retains query subtopics but drops the user’s subtopic prefer-
ences. This phenomenon proves that explicitly measuring the user’s
subtopic preferences can capture user intents more accurately, and
provide more satisfactory results for users.

Implicit signal. Though we introduce subtopics explicitly, our
model still retains the implicit user interest to achieve comprehen-
sive modeling of user intents. To prove its effectiveness, we drop
the implicit score 𝑠 im and construct a variant, “w/o IMP”. We dis-
cover that the “w/o IMP” performs 2.14% and 2.58% worse in MAP
and P@1 than our model. It implies that the user’s implicit interest
plays an important role in personalized search. It suggests that
explicit and implicit preference signals are coherent and improve
the ranking quality together.

Pseudo label model. To verify the utility of the PAM in ensur-
ing the accuracy of predicted subtopic preferences, we devise “w/o
PAM” that optimizes the ranking model by the LTR task only. Con-
sidering the construction of PAM relies on a supervised manner, we
further employ an alternative unsupervised way to extract pseudo
labels, which decodes the user’s subtopic preferences from the av-
eraging of the clicked documents via cosine similarity. We call this
model “w/o SUP”. From Table 3, the results of both variants decline
significantly. It confirms the importance of the PAM and indicates
that a well-trained PAM can capture accurate preference signals,
hence providing the correct learning direction for the training of
ExpliPS. We also illustrate the performance of PAM in the last row,
which demonstrates that it can achieve satisfied ranking results,
which potentially ensures the accuracy of the pseudo labels.

Subtopic-aware mask. Our derivation of Eq. (6) reveals the
rationality of applying the subtopic-aware mask to the transformer
structure of SPE. To practically validate this mask strategy, we build
a variant of our model, namely “w/o MASK”, leveraging the full
attention strategy for SPE. The degraded performance verifies the
effectiveness of our mask strategy that all subtopics and the issued
query should be invisible to each other to avoid paying excessive
attention to redundant information. Thus, our SPE can capture
more personal signals from user histories and provide more reliable
representations of queries and subtopics.
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Figure 3: The comparison of intent & subtopic entropy.
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Figure 4: Visualization of two types of subtopic preferences

5.5 Experiments of Stability of Ranking Results
Since aggregating user histories solely based on the vague query
cannot clarify the specific user intent but introduce noisy historical
information. It will cause the top results cannot steadily meet the
user’s intent because the noise information will mislead the model
to broadly cover unimportant subtopics rather than focusing on the
user’s desired subtopics. However, our model explicitly captures the
user’s subtopic preferences, enhancing the documents related to the
preferred subtopics to be ranked ahead. Therefore, top results can
cover the user’s intent more stably. To confirm it quantitatively, we
propose an “Intent Entroy” (IEnt) to measure the coverage stability
of the ranking results on the user intent. The lower the intent
entropy is, the more stable the user intent is covered. We provide
the calculation of the intent entropy in the Appendix A.

The intent entropy of our model with other baselines is illus-
trated in Fig. 3(a). From the comparison, we find that all personalized
models are under the original ranking, which means that the per-
sonalized models have the ability to prioritize the documents the
user desires. Meanwhile, our model performs the highest stability
of user intent coverage with the lowest intent entropy. The results
reveal that our model can filter out the noise and focus on the docu-
ments that satisfy the user intents. In addition, the intent entropy of
all models rises with the increase of 𝑁 . It is a natural phenomenon
as more documents will inevitably cover more subtopics.

Considering that the calculation of IEnt involves the user’s
subtopic preferences, which are produced by the PAM, the re-
sults may be biased toward our model. We additionally develop
“subtopic entropy” (SEnt) that excludes user preferences to mea-
sure the subtopic coverage of top results. Its computation is also
presented in Appendix B. From the results shown in Fig. 3(b), our
model is still under other baselines, which implies that ExpliPS
focuses on specific subtopics and arranges the documents based
on them. The high SEnt of other results might be because their
perception of user intent is confused, thus the subtopic coverage of
ranking results exhibits a broad and chaotic state.

5.6 Case Study
Previous experiments have validated the performance of our model
from multiple perspectives. To further test that our model can pre-
dict the user’s subtopic preferences accurately, and illustrate the
interpretability of the ranking results, we provide two kinds of
case studies. The one visualizes some subtopics reference distribu-
tions produced from ExpliPS and PAM to prove that our model is
able to predict accurate subtopic preferences. The other one pro-
vides a ranking result returned by our model to demonstrate its
interpretability.

Visualization of subtopic preference distributions. Our
model involves two types of subtopic preference distribution, one
is the pseudo label yielded by the PAM, and the other one applied
to inference is generated by the SPE. We randomly select 2 queries
with 10 subtopics each from the test set and visualize their two
types of distributions in Fig. 4. The query content is abbreviated
as "*" on the Y-axis, which displays the query subtopics. On the
X-axis is the degree of preference. From the figures, we notice that
there are clear preference variations across the query subtopics,
and a few subtopics dominate the user interests. This phenomenon
illustrates that users do actually have certain tendencies for cer-
tain subtopics when they ask an informative question. This result
supports our hypothesis that explicit consideration of the user’s
subtopic preferences promotes personalization.

The experiment of interpretability is presented in Appendix C.

6 CONCLUSION
In this paper, we propose a personalized model which incorporates
query subtopics explicitly to promote the ranking quality. For cap-
turing the user’s subtopic preferences, we first use the semantic
encoder to learn the representation of every historical behaviour,
then we adopt the subtopic preference encoder to capture the user’s
subtopic preferences and implicit interests. Finally, we apply the
subtopic-aware personalized ranker to yield the final scores of can-
didates by exploiting query subtopics explicitly. Endowed with the
benefits of the multi-task loss function, our model could predict
the user’s subtopic preferences accurately and provide satisfactory
results for her. The experiments confirm the effectiveness of our
model on search result personalization and interpretability. Due to
the time limitation, we only employ google suggestions to represent
the subtopics, in future, we will consider exploring diverse subtopic
mining methods for explicit search result personalization.

ACKNOWLEDGMENTS
Zhicheng Dou is the corresponding author. This work was sup-
ported by the National Natural Science Foundation of China No.
62272467 and No. 61832017, Beijing Outstanding Young Scientist
Program NO. BJJWZYJH012019100020098, the Fundamental Re-
search Funds for the Central Universities, the Research Funds of
Renmin University of China NO. 22XNKJ34, and Public Computing
Cloud, Renmin University of China. The work was partially done at
Engineering Research Center of Next-Generation Intelligent Search
and Recommendation, MOE, and Beijing Key Laboratory of Big
Data Management and Analysis Methods.



Incorporating Explicit Subtopics in Personalized Search WWW ’23, May 1–5, 2023, Austin, TX, USA

REFERENCES
[1] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong. 2009.

Diversifying Search Results. In Proceedings of the Second ACM International
Conference on Web Search and Data Mining (Barcelona, Spain) (WSDM ’09).
Association for Computing Machinery, New York, NY, USA, 5–14. https:
//doi.org/10.1145/1498759.1498766

[2] Wasi Uddin Ahmad, Kai-Wei Chang, and Hongning Wang. 2019. Context At-
tentive Document Ranking and Query Suggestion. In Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in Information
Retrieval (Paris, France) (SIGIR’19). Association for Computing Machinery, New
York, NY, USA, 385–394. https://doi.org/10.1145/3331184.3331246

[3] Paul N. Bennett, Filip Radlinski, RyenW.White, and Emine Yilmaz. 2011. Inferring
and Using LocationMetadata to PersonalizeWeb Search. In Proceedings of the 34th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (Beijing, China) (SIGIR ’11). Association for Computing Machinery, New
York, NY, USA, 135–144. https://doi.org/10.1145/2009916.2009938

[4] Paul N. Bennett, Ryen W. White, Wei Chu, Susan T. Dumais, Peter Bailey, Fedor
Borisyuk, and Xiaoyuan Cui. 2012. Modeling the Impact of Short- and Long-Term
Behavior on Search Personalization. In Proceedings of the 35th International ACM
SIGIR Conference on Research and Development in Information Retrieval (Portland,
Oregon, USA) (SIGIR ’12). Association for Computing Machinery, New York, NY,
USA, 185–194. https://doi.org/10.1145/2348283.2348312

[5] Paul N. Bennett, Ryen W. White, Wei Chu, Susan T. Dumais, Peter Bailey, Fedor
Borisyuk, and Xiaoyuan Cui. 2012. Modeling the Impact of Short- and Long-Term
Behavior on Search Personalization. In Proceedings of the 35th International ACM
SIGIR Conference on Research and Development in Information Retrieval (Portland,
Oregon, USA) (SIGIR ’12). Association for Computing Machinery, New York, NY,
USA, 185–194. https://doi.org/10.1145/2348283.2348312

[6] David Blei, Andrew Ng, and Michael Jordan. 2001. Latent Dirichlet Allocation.
The Journal of Machine Learning Research 3, 601–608.

[7] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. 2005. Learning to Rank Using Gradient Descent. In Proceed-
ings of the 22nd International Conference on Machine Learning (Bonn, Germany)
(ICML ’05). Association for Computing Machinery, New York, NY, USA, 89–96.
https://doi.org/10.1145/1102351.1102363

[8] Chris J. C. Burges, Krysta M. Svore, Qiang Wu, and Jianfeng Gao. 2008. Rank-
ing, Boosting, and Model Adaptation. Technical Report MSR-TR-2008-109.
18 pages. https://www.microsoft.com/en-us/research/publication/ranking-
boosting-and-model-adaptation/

[9] Fei Cai, Shangsong Liang, and Maarten de Rijke. 2014. Personalized Document
Re-Ranking Based on Bayesian Probabilistic Matrix Factorization. In Proceedings
of the 37th International ACM SIGIR Conference on Research and Development in
Information Retrieval (Gold Coast, Queensland, Australia) (SIGIR ’14). Association
for Computing Machinery, New York, NY, USA, 835–838. https://doi.org/10.
1145/2600428.2609453

[10] Mark J. Carman, Fabio Crestani, Morgan Harvey, and Mark Baillie. 2010. Towards
Query Log Based Personalization Using Topic Models. In Proceedings of the
19th ACM International Conference on Information and Knowledge Management
(Toronto, ON, Canada) (CIKM ’10). Association for Computing Machinery, New
York, NY, USA, 1849–1852. https://doi.org/10.1145/1871437.1871745

[11] Charles L. A. Clarke, Nick Craswell, and Ian Soboroff. 2009. Overview of the
TREC 2009 Web Track. In Proceedings of The Eighteenth Text REtrieval Conference,
TREC 2009, Gaithersburg, Maryland, USA, November 17-20, 2009 (NIST Special
Publication, Vol. 500-278), Ellen M. Voorhees and Lori P. Buckland (Eds.). National
Institute of Standards and Technology (NIST). http://trec.nist.gov/pubs/trec18/
papers/WEB09.OVERVIEW.pdf

[12] Kevyn Collins-Thompson, Paul N. Bennett, Ryen W. White, Sebastian de la
Chica, and David Sontag. 2011. Personalizing Web Search Results by Reading
Level. In Proceedings of the 20th ACM International Conference on Information
and Knowledge Management (Glasgow, Scotland, UK) (CIKM ’11). Association for
Computing Machinery, New York, NY, USA, 403–412. https://doi.org/10.1145/
2063576.2063639

[13] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. 2008. An Exper-
imental Comparison of Click Position-Bias Models. In Proceedings of the 2008
International Conference on Web Search and Data Mining (Palo Alto, California,
USA) (WSDM ’08). Association for Computing Machinery, New York, NY, USA,
87–94. https://doi.org/10.1145/1341531.1341545

[14] Steve Cronen-Townsend andW. Bruce Croft. 2002. Quantifying Query Ambiguity.
In Proceedings of the Second International Conference on Human Language Tech-
nology Research (San Diego, California) (HLT ’02). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 104–109.

[15] Zhicheng Dou, Ruihua Song, and Ji-Rong Wen. 2007. A Large-Scale Evalua-
tion and Analysis of Personalized Search Strategies. In Proceedings of the 16th
International Conference on World Wide Web (Banff, Alberta, Canada) (WWW
’07). Association for Computing Machinery, New York, NY, USA, 581–590.
https://doi.org/10.1145/1242572.1242651

[16] Zhicheng Dou, Xue Yang, Diya Li, Ji-Rong Wen, and Tetsuya Sakai. 2020. Low-
cost, bottom-up measures for evaluating search result diversification. Information
Retrieval Journal 23 (02 2020). https://doi.org/10.1007/s10791-019-09356-x

[17] Songwei Ge, Zhicheng Dou, Zhengbao Jiang, Jian-Yun Nie, and Ji-RongWen. 2018.
Personalizing Search Results Using Hierarchical RNN with Query-Aware Atten-
tion. In Proceedings of the 27th ACM International Conference on Information and
KnowledgeManagement (Torino, Italy) (CIKM ’18). Association for ComputingMa-
chinery, New York, NY, USA, 347–356. https://doi.org/10.1145/3269206.3271728

[18] Gustavo Gonçalves, Flávio Martins, and João Magalhães. 2018. Analysis of
Subtopic Discovery Algorithms for Real-Time Information Summarization. In
Companion Proceedings of the TheWeb Conference 2018 (Lyon, France) (WWW ’18).
International World Wide Web Conferences Steering Committee, Republic and
Canton of Geneva, CHE, 1855–1856. https://doi.org/10.1145/3184558.3191651

[19] Sha Hu, Zhicheng Dou, Xiaojie Wang, Tetsuya Sakai, and Ji-Rong Wen. 2015.
Search Result Diversification Based on Hierarchical Intents. In Proceedings of the
24th ACM International on Conference on Information and Knowledge Management
(Melbourne, Australia) (CIKM ’15). Association for Computing Machinery, New
York, NY, USA, 63–72. https://doi.org/10.1145/2806416.2806455

[20] Zhengbao Jiang, Ji-Rong Wen, Zhicheng Dou, Wayne Xin Zhao, Jian-Yun Nie,
and Ming Yue. 2017. Learning to Diversify Search Results via Subtopic At-
tention. In Proceedings of the 40th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (Shinjuku, Tokyo, Japan) (SI-
GIR ’17). Association for Computing Machinery, New York, NY, USA, 545–554.
https://doi.org/10.1145/3077136.3080805

[21] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri
Gay. 2005. Accurately Interpreting Clickthrough Data as Implicit Feedback.
In Proceedings of the 28th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (Salvador, Brazil) (SIGIR ’05).
Association for Computing Machinery, New York, NY, USA, 154–161. https:
//doi.org/10.1145/1076034.1076063

[22] Jiongnan Liu, Zhicheng Dou, Xiaojie Wang, Shuqi Lu, and Ji-Rong Wen. 2020.
DVGAN: A Minimax Game for Search Result Diversification Combining Explicit
and Implicit Features. In Proceedings of the 43rd International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (Virtual Event, China)
(SIGIR ’20). Association for Computing Machinery, New York, NY, USA, 479–488.
https://doi.org/10.1145/3397271.3401084

[23] Shuqi Lu, Zhicheng Dou, Xu Jun, Jian-Yun Nie, and Ji-Rong Wen. 2019. PSGAN:
A Minimax Game for Personalized Search with Limited and Noisy Click Data.
In Proceedings of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval (Paris, France) (SIGIR’19). Association for
Computing Machinery, New York, NY, USA, 555–564. https://doi.org/10.1145/
3331184.3331218

[24] Zhengyi Ma, Zhicheng Dou, Guanyue Bian, and Ji-Rong Wen. 2020. PSTIE: Time
Information Enhanced Personalized Search. Association for Computing Machinery,
New York, NY, USA, 1075–1084. https://doi.org/10.1145/3340531.3411877

[25] Xubo Qin, Zhicheng Dou, and Ji-Rong Wen. 2020. Diversifying Search Results
Using Self-Attention Network. Association for Computing Machinery, New York,
NY, USA, 1265–1274. https://doi.org/10.1145/3340531.3411914

[26] Filip Radlinski and Susan Dumais. 2006. Improving Personalized Web Search
Using Result Diversification. In Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (Seattle,
Washington, USA) (SIGIR ’06). Association for Computing Machinery, New York,
NY, USA, 691–692. https://doi.org/10.1145/1148170.1148320

[27] Stephen Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance
Framework: BM25 and Beyond. Found. Trends Inf. Retr. 3, 4 (apr 2009), 333–389.
https://doi.org/10.1561/1500000019

[28] Rodrygo L.T. Santos, Craig Macdonald, and Iadh Ounis. 2010. Exploiting Query
Reformulations for Web Search Result Diversification. In Proceedings of the 19th
International Conference on World Wide Web (Raleigh, North Carolina, USA)
(WWW ’10). Association for Computing Machinery, New York, NY, USA, 881–890.
https://doi.org/10.1145/1772690.1772780

[29] S. Sendhilkumar and T. V. Geetha. 2008. Personalized Ontology for Web Search
Personalization. In Proceedings of the 1st Bangalore Annual Compute Conference
(Bangalore, India) (COMPUTE ’08). Association for Computing Machinery, New
York, NY, USA, Article 18, 7 pages. https://doi.org/10.1145/1341771.1341790

[30] Xuehua Shen, Bin Tan, and ChengXiang Zhai. 2005. Implicit User Modeling for
Personalized Search. In Proceedings of the 14th ACM International Conference
on Information and Knowledge Management (Bremen, Germany) (CIKM ’05).
Association for Computing Machinery, New York, NY, USA, 824–831. https:
//doi.org/10.1145/1099554.1099747

[31] Ahu Sieg, BamshadMobasher, and Robin Burke. 2007. Web Search Personalization
with Ontological User Profiles. In Proceedings of the Sixteenth ACM Conference
on Conference on Information and Knowledge Management (Lisbon, Portugal)
(CIKM ’07). Association for Computing Machinery, New York, NY, USA, 525–534.
https://doi.org/10.1145/1321440.1321515

[32] Craig Silverstein, Hannes Marais, Monika Henzinger, and Michael Moricz. 1999.
Analysis of a Very Large Web Search Engine Query Log. SIGIR Forum 33, 1 (Sept.
1999), 6–12. https://doi.org/10.1145/331403.331405

https://doi.org/10.1145/1498759.1498766
https://doi.org/10.1145/1498759.1498766
https://doi.org/10.1145/3331184.3331246
https://doi.org/10.1145/2009916.2009938
https://doi.org/10.1145/2348283.2348312
https://doi.org/10.1145/2348283.2348312
https://doi.org/10.1145/1102351.1102363
https://www.microsoft.com/en-us/research/publication/ranking-boosting-and-model-adaptation/
https://www.microsoft.com/en-us/research/publication/ranking-boosting-and-model-adaptation/
https://doi.org/10.1145/2600428.2609453
https://doi.org/10.1145/2600428.2609453
https://doi.org/10.1145/1871437.1871745
http://trec.nist.gov/pubs/trec18/papers/WEB09.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec18/papers/WEB09.OVERVIEW.pdf
https://doi.org/10.1145/2063576.2063639
https://doi.org/10.1145/2063576.2063639
https://doi.org/10.1145/1341531.1341545
https://doi.org/10.1145/1242572.1242651
https://doi.org/10.1007/s10791-019-09356-x
https://doi.org/10.1145/3269206.3271728
https://doi.org/10.1145/3184558.3191651
https://doi.org/10.1145/2806416.2806455
https://doi.org/10.1145/3077136.3080805
https://doi.org/10.1145/1076034.1076063
https://doi.org/10.1145/1076034.1076063
https://doi.org/10.1145/3397271.3401084
https://doi.org/10.1145/3331184.3331218
https://doi.org/10.1145/3331184.3331218
https://doi.org/10.1145/3340531.3411877
https://doi.org/10.1145/3340531.3411914
https://doi.org/10.1145/1148170.1148320
https://doi.org/10.1561/1500000019
https://doi.org/10.1145/1772690.1772780
https://doi.org/10.1145/1341771.1341790
https://doi.org/10.1145/1099554.1099747
https://doi.org/10.1145/1099554.1099747
https://doi.org/10.1145/1321440.1321515
https://doi.org/10.1145/331403.331405


WWW ’23, May 1–5, 2023, Austin, TX, USA Wang et al.

[33] David Sontag, Kevyn Collins-Thompson, Paul N. Bennett, Ryen W. White, Su-
san Dumais, and Bodo Billerbeck. 2012. Probabilistic Models for Personal-
izing Web Search. In Proceedings of the Fifth ACM International Conference
on Web Search and Data Mining (Seattle, Washington, USA) (WSDM ’12). As-
sociation for Computing Machinery, New York, NY, USA, 433–442. https:
//doi.org/10.1145/2124295.2124348

[34] Toru Takaki, Atsushi Fujii, and Tetsuya Ishikawa. 2004. Associative Docu-
ment Retrieval by Query Subtopic Analysis and Its Application to Invalidity
Patent Search. In Proceedings of the Thirteenth ACM International Conference
on Information and Knowledge Management (Washington, D.C., USA) (CIKM
’04). Association for Computing Machinery, New York, NY, USA, 399–405.
https://doi.org/10.1145/1031171.1031251

[35] Bin Tan, Xuehua Shen, and ChengXiang Zhai. 2006. Mining Long-Term Search
History to Improve Search Accuracy. In Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (Philadelphia,
PA, USA) (KDD ’06). Association for Computing Machinery, New York, NY, USA,
718–723. https://doi.org/10.1145/1150402.1150493

[36] David Vallet and Pablo Castells. 2012. Personalized Diversification of Search
Results. In Proceedings of the 35th International ACM SIGIR Conference on Research
and Development in Information Retrieval (Portland, Oregon, USA) (SIGIR ’12).
Association for Computing Machinery, New York, NY, USA, 841–850.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You
Need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates
Inc., Red Hook, NY, USA, 6000–6010.

[38] Maksims Volkovs. 2015. Context Models For Web Search Personalization. CoRR
abs/1502.00527 (2015). arXiv:1502.00527 http://arxiv.org/abs/1502.00527

[39] Thanh Tien Vu, Alistair Willis, Son Ngoc Tran, and Dawei Song. 2015. Temporal
Latent Topic User Profiles for Search Personalisation. In Advances in Information
Retrieval - 37th European Conference on IR Research, ECIR 2015, Vienna, Austria,
March 29 - April 2, 2015. Proceedings (Lecture Notes in Computer Science, Vol. 9022),
Allan Hanbury, Gabriella Kazai, Andreas Rauber, and Norbert Fuhr (Eds.). 605–
616. https://doi.org/10.1007/978-3-319-16354-3_67

[40] Hongning Wang, Xiaodong He, Ming-Wei Chang, Yang Song, Ryen W. White,
and Wei Chu. 2013. Personalized Ranking Model Adaptation for Web Search.
In Proceedings of the 36th International ACM SIGIR Conference on Research and
Development in Information Retrieval (Dublin, Ireland) (SIGIR ’13). Association for
Computing Machinery, New York, NY, USA, 323–332. https://doi.org/10.1145/
2484028.2484068

[41] RyenW.White,Wei Chu, AhmedHassan, XiaodongHe, Yang Song, andHongning
Wang. 2013. Enhancing Personalized Search by Mining and Modeling Task
Behavior. In Proceedings of the 22nd International Conference on World Wide Web
(Rio de Janeiro, Brazil) (WWW ’13). Association for Computing Machinery, New
York, NY, USA, 1411–1420. https://doi.org/10.1145/2488388.2488511

[42] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power.
2017. End-to-End Neural Ad-Hoc Ranking with Kernel Pooling. In Proceedings
of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval (Shinjuku, Tokyo, Japan) (SIGIR ’17). Association for
Computing Machinery, New York, NY, USA, 55–64.

[43] Takehiro Yamamoto, Yiqun Liu, Min Zhang, Zhicheng Dou, Ke Zhou,
Ilya Markov, Makoto P. Kato, Hiroaki Ohshima, and Sumio Fujita. 2016.
Overview of the NTCIR-12 IMine-2 Task. In Proceedings of the 12th NT-
CIR Conference on Evaluation of Information Access Technologies, National
Center of Sciences, Tokyo, Japan, June 7-10, 2016, Noriko Kando, Tet-
suya Sakai, and Mark Sanderson (Eds.). National Institute of Informatics
(NII). http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/
OVERVIEW/01-NTCIR12-OV-IMINE-YamamotoT.pdf

[44] Jing Yao, Zhicheng Dou, and Ji-Rong Wen. 2020. Employing Personal Word
Embeddings for Personalized Search. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval.
Association for Computing Machinery, New York, NY, USA, 1359–1368. https:
//doi.org/10.1145/3397271.3401153

[45] Jing Yao, Zhicheng Dou, Jun Xu, and Ji-Rong Wen. 2020. RLPer: A Reinforcement
Learning Model for Personalized Search. In WWW ’20: The Web Conference 2020,
Taipei, Taiwan, April 20-24, 2020, Yennun Huang, Irwin King, Tie-Yan Liu, and
Maarten van Steen (Eds.). ACM / IW3C2, 2298–2308. https://doi.org/10.1145/
3366423.3380294

[46] Wei Zheng, Xuanhui Wang, Hui Fang, and Hong Cheng. 2011. An Exploration of
Pattern-Based Subtopic Modeling for Search Result Diversification. In Proceedings
of the 11th Annual International ACM/IEEE Joint Conference on Digital Libraries
(Ottawa, Ontario, Canada) (JCDL ’11). Association for Computing Machinery,
New York, NY, USA, 387–388. https://doi.org/10.1145/1998076.1998148

[47] Yujia Zhou, Zhicheng Dou, Bingzheng Wei, Ruobing Xie, and Ji-Rong Wen.
2021. Group Based Personalized Search by Integrating Search Behaviour and Friend
Network. Association for Computing Machinery, New York, NY, USA, 92–101.
https://doi.org/10.1145/3404835.3462918

[48] Yujia Zhou, Zhicheng Dou, and Ji-Rong Wen. 2020. Encoding History with
Context-Aware Representation Learning for Personalized Search. In Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development
in Information Retrieval. Association for Computing Machinery, New York, NY,
USA, 1111–1120. https://doi.org/10.1145/3397271.3401175

[49] Yujia Zhou, Zhicheng Dou, and Ji-Rong Wen. 2020. Enhancing Re-Finding
Behavior with External Memories for Personalized Search. In Proceedings of the
13th International Conference on Web Search and Data Mining (Houston, TX, USA)
(WSDM ’20). Association for Computing Machinery, New York, NY, USA, 789–797.
https://doi.org/10.1145/3336191.3371794

[50] Yujia Zhou, Zhicheng Dou, Yutao Zhu, and Ji-Rong Wen. 2021. PSSL: Self-
Supervised Learning for Personalized Search with Contrastive Sampling. Asso-
ciation for Computing Machinery, New York, NY, USA, 2749–2758. https:
//doi.org/10.1145/3459637.3482379

.1 Implement Details
We test multiple experiments to determine the hyper-parameter
settings. Eventually, The word embedding matrix is initialized with
100-dimension. The hidden size of the transformer structure is 256
and the layer 𝐿 is 2. For the multi-head attention, we set the head
number as 8. To trade-off the effectiveness and efficiency, we select
the first relevant for each query as the behaviour information, and
the quantity of the subtopic is up to 11. For the queries without
google suggestions returned, we consider the query itself to be
its subtopic for ensuring the generalization of our model. Then
we select the latest 50 interactions for the current query as the
historical search log. For the optimization of the PAM, the epoch is
set as 2 with a 1𝑒−3 learning rate. In the training of the whole model,
the weights of the two objectives, _1, _2 are set to 1, 10. The training
epoch number is 2 and the learning rate is 5𝑒−5. Note that the PAM
model is pre-trained separately and viewed as a labeling model,
which is not trained with our ranking model. For both stages, the
AdamW optimizer is used to learn the parameters of the model. We
release our code in https://github.com/ShootingWong/ExpliPS.

A CALCULATION OF INTENT ENTROPY
As we introduced in Section 5.5, we need to quantitatively verify
the ranking results produced by our personalized model can stably
cover the user intents. Thus, intent entropy (IEnt) is devised to
measure the coverage stability of the ranking results on the user’s
preferred subtopics. Specifically, we first determine the coverage of
top-N results on each subtopic, i.e., 𝑐 (𝑠𝑖 |𝑇𝑁 ), as below,

𝑐 (𝑠𝑖 |𝑇𝑁 ) =
∑︁𝑁

𝑗=1
𝑐 (𝑠𝑖 |𝑑 𝑗 ) (22)

𝑐 (𝑠𝑖 |𝑑 𝑗 ) =
{

1, argmax𝑘
(
sim

(
d𝑗 , s𝑘

) )
= 𝑖

0, 𝑒𝑙𝑠𝑒,
(23)

where 𝑇𝑁 denotes the top-N results and 𝑑 𝑗 is one of them, i.e.,
𝑑 𝑗 ∈ 𝑇𝑁 . 𝑐 (𝑠𝑖 |𝑑 𝑗 ) represents whether the document 𝑑 𝑗 covers the
subtopic 𝑠𝑖 , and we view the most relevant subtopic as the covered
one by the hardmax operation.

Then, we weight it by the user’s subtopic preference, 𝑝 (𝑠𝑖 |𝑢),
which is produced by the pseudo label model, resulting in a distribu-
tion, 𝑝 (𝑠𝑖 |𝑢,𝑇𝑁 ), whose information entropy represents the stability
of user intent coverage. Therefore, the intent entropy, IEnt(𝑇𝑁 ), is
calculated as follows,

𝑝 (𝑠𝑖 |𝑢,𝑇𝑁 ) = softmax𝑖𝑝 (𝑠𝑖 |𝑢)𝑐 (𝑠𝑖 |𝑇𝑁 ), (24)

IEnt(𝑇𝑁 ) = −
∑︁𝑘

𝑖=1
𝑝 (𝑠𝑖 |𝑢,𝑇𝑁 ) log (𝑝 (𝑠𝑖 |𝑢,𝑇𝑁 )) , (25)
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Figure 5: A case for interpretability of the search result.

The lower the intention entropy is, the more stable the user intent
is covered.

B CALCULATION OF SUBTOPIC ENTROPY
Considering that the user’s subtopic preferences are generated by
the PAM, the results may be biased in favor of our model. Con-
sequently, we additionally design “subtopic entropy” (SEnt) that
excludes user preferences to measure the subtopic coverage of top

results. The following provides a presentation of its computation:

SEnt(𝑇𝑁 ) = −
∑︁𝑘

𝑖=1
𝑝 (𝑠𝑖 |𝑇𝑁 ) log (𝑝 (𝑠𝑖 |𝑇𝑁 )) (26)

𝑝 (𝑠𝑖 |𝑇𝑁 ) = softmax𝑖
(∑︁𝑁

𝑗=1
𝑐 (𝑠𝑖 |𝑑 𝑗 )

)
. (27)

The subtopic entropy can measure the coverage stability of the
top-N results on certain subtopics. The stability of query subtopic
coverage increases with decreasing subtopic entropy.

C CASE OF SEARCH RESULT
INTERPRETABILITY

As we introduced in Section 1, considering the user’s preference
distribution on query subtopics is also in favor of the search re-
sult interpretability. Thus, we provide an example to illustrate it,
which is displayed in Fig. 5. We randomly select a behaviour in the
test dataset, and visualize the user preferences and ranking results
from our model. We normalize and present the most preferred two
subtopics to save space. Our model finds that the user want to un-
derstand the definition when she searches for an unknown disease,
thus it predicts that the user prefers the subtopic “bone cancer
definition” . As a result, the model will prioritize the documents
related to the “bone cancer definition”. In this case, we can provide
a reasonable interpretability of the returned list, hence improving
the user’s search experience.
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