
Ultron: An Ultimate Retriever on Corpus with a Model-based Indexer

Yujia Zhou,1 Jing Yao, 3 Zhicheng Dou, 1 Ledell Wu, 2 Peitian Zhang, 1 Ji-Rong Wen 1

1 Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China
2 Beijing Academy of Artificial Intelligence, Beijing, China

3 Microsoft Research Asia, Beijing, China
zhouyujia@ruc.edu.cn, jingyao@microsoft.com, dou@ruc.edu.cn

Abstract

Document retrieval has been extensively studied within the
index-retrieve framework for decades, which has withstood
the test of time. Unfortunately, such a pipelined framework
limits the optimization of the final retrieval quality, because
indexing and retrieving are separated stages that can not be
jointly optimized in an end-to-end manner. In order to unify
these two stages, we explore a model-based indexer for docu-
ment retrieval. Concretely, we propose Ultron, which encodes
the knowledge of all documents into the model and aims to di-
rectly retrieve relevant documents end-to-end. For the model-
based indexer, how to represent docids and how to train the
model are two main issues to be explored. Existing solutions
suffer from semantically deficient docids and limited super-
vised data. To tackle these two problems, first, we devise
two types of docids that are richer in semantics and easier
for model inference. In addition, we propose a three-stage
training workflow to capture more knowledge contained in
the corpus and associations between queries and docids. Ex-
periments on two public datasets demonstrate the superiority
of Ultron over advanced baselines for document retrieval.

Introduction
Search engines are helpful to meet users’ daily information
needs. Given an issued query, search engines first retrieve
candidate documents from a large document collection and
then re-rank these candidate documents to return a ranking
list (Robertson and Zaragoza 2009; Zhan et al. 2020; Mitra
and Craswell 2018). In this process, the performance of the
retrieval stage is critical to the final search quality. For docu-
ment retrieval, the inverted index has served as the backbone
of term-based sparse retrieval over the past decades. With an
inverted index built on the corpus, sparse retrieval methods
such as BM25 (Robertson and Zaragoza 2009) can measure
term frequency and other lexical features to retrieve relevant
documents, which encounters the challenge of vocabulary
mismatch. In recent years, many dense retrieval methods are
proposed to tackle this problem (Gao et al. 2021; Zhan et al.
2020). They first encode the semantic information contained
in queries and documents into dense vectors, and then re-
trieve relevant documents over the vectorized index.

Previous methods, including both sparse and dense re-
trieval models, are extensively studied within the index-
retrieve framework that has been proven to be valuable
for document retrieval. Unfortunately, such a pipeline-based

framework requires a large pre-computed index built on the
whole corpus to support subsequent document retrieval. This
not only results in huge memory overhead, but also limits
optimizing the separated indexing and retrieval stages in an
end-to-end way. To address these limitations, several stud-
ies (Tay et al. 2022; Bevilacqua et al. 2022; Zhou et al.
2022) have preliminarily tried to build an end-to-end re-
trieval model that directly returns relevant documents with-
out separated indexes. Semantic information of documents
in the corpus is encoded into a large model, which can be
regarded as a differentiable indexer and can be optimized
end-to-end. Inspired by this framework, we intend to delve
deeper into the challenges and explore better usability of this
model-centric paradigm for document retrieval tasks.

Within such a model-centric retrieval framework, there
are two main technical difficulties: (1) how to represent do-
cids so that the model can learn the semantics of docu-
ments and retrieve the correct docids more easily; (2) how to
train the model so as to capture the semantic knowledge of
each docid and to learn the mapping relations from queries
to relevant docids. Some early studies, such as DSI (Tay
et al. 2022), tried a variety of inspiring document identi-
fiers, such as atomic docids, semantic cluster docids, etc.
However, these heuristic docids lack sufficient document se-
mantic knowledge, which plays a critical role in document
retrieval. In addition, existing models are only trained with
limited supervised data. This limits the model to learn suffi-
cient knowledge over each docid for retrieval and might lead
to model over-fitting. In this paper, we follow the model-
centric paradigm for document retrieval and attempt to deal
with the above two main challenges.

To enrich the semantic information of docids, we repre-
sent each docid as a sequence of tokens that can summarize
the underlying semantics of the document. Motivated by tra-
ditional term-based index and vectorized index, we devise
two types of docids corresponding to the sparse and dense
retrieval respectively. The first is Keyword-based identi-
fiers, which identify documents using a sequence of key-
words. In this paper, we use the URL and title of webpages,
which are natural keywords that somewhat guarantee both
the uniqueness and semantics of the identifier. The second
is Semantic-based identifiers, which represent a document
with a series of latent semantic tokens. Inspired by the effec-
tiveness of product quantization (PQ) technology (Ge et al.

ar
X

iv
:2

20
8.

09
25

7v
1

 [
cs

.I
R

]
 1

9
A

ug
 2

02
2

2014; Jégou, Douze, and Schmid 2011a; Zhan et al. 2021a)
in retrieval, we use the PQ code of a document as a type of
semantic-based identifier.

For model training, the training target of retrieval is to
learn the mapping relations from queries to relevant docids.
To cope with the problem of limited click data, we devise
a three-stage training workflow, which adds two stages of
pre-training to enrich the knowledge of docids stored in the
model-based indexer. (1) General Pre-training. This stage
aims to capture the document’s semantic information by
mapping passages and key terms of the document to the cor-
responding docid. (2) Search-oriented Pre-training. To en-
hance the performance on search tasks, the model needs to
be more capable of mapping short query-like texts to corre-
sponding docids. To get sufficient data, we generate a lot of
pseduo queries for model pre-training, thereby adapting the
model to search scenarios. (3) Supervised Fine-tuning. The
final stage is to finetune the model on supervised relevance
data, so as to learn more robust associations between queries
and relevant docids.

Specifically, we propose the model Ultron: an ultimate
retriever on corpus with a model-based indexer, which is
built on a generative language model with transformer-
based encoder-decoder. It regards document retrieval as a
sequence-to-sequence task from an issued query to docids.
In the pre-processing stage, we generate two types of se-
mantic identifiers for each document in the corpus. During
training, we apply the three-stage training to encode the se-
mantic knowledge of documents into the model parameters.
At the inference time, given a query, Ultron generates a do-
cid ranking list directly based upon the generation proba-
bilities via constrained beam search. Experimental results
on MS MARCO and NQ datasets indicate that our Ultron
model not only outperforms advanced baselines of sparse or
dense retrieval, but also achieves significant improvements
over existing end-to-end retrieval methods.

The contributions of this work can be summarized as: (1)
Along with the blueprint of model-based IR (Metzler et al.
2021), we propose Ultron, a sequence-to-sequence model
that directly generates docids for a query. It demonstrates
the feasibility of model-based indexer on the document re-
trieval task. (2) To enhance the semantics of docid, we de-
vise keyword-based and semantic-based docids, which show
richer semantic attributes than existing methods. (3) To al-
leviate the problem of limited supervised data, we propose
a three-stage training workflow to encode more knowledge
over docids into the model for better document retrieval.

Related Work
Sparse Retrieval with Inverted Indexes. Thanks to effi-
ciency and effectiveness, sparse retrieval with an inverted
index is widely used in practice. BM25 (Robertson and
Zaragoza 2009) employs the tf-idf signal to measure term
weights and compute relevance scores. Graph-based ap-
proaches (Blanco and Lioma 2012; Rousseau and Vazir-
giannis 2013) build document graphs and follow the idea
of PageRank to calculate term weights. With representation
learning (Mikolov et al. 2013; Pennington, Socher, and Man-
ning 2014), one line of research (Zheng and Callan 2015;

Guo et al. 2016; Dehghani et al. 2017) automatically learns
term weights from word embeddings rich in semantic and
co-occurrence information. DeepCT (Dai and Callan 2019)
and HDCT (Dai and Callan 2020) leverage contextualized
text representation to predict term importance. A challenge
of sparse retrieval is the mismatch between query and doc-
ument words. One kind of methods (Nogueira et al. 2019;
Nogueira, Lin, and Epistemic 2019) expands possible terms
for queries or documents. A second approach utilizes word
vectors to measure soft similarity between terms.

Dense Retrieval with Vectorized Indexes. These meth-
ods rely on deep learning to capture the semantic relevance
between queries and documents, going beyond lexical over-
lap to relieve the mismatch problem (Gao et al. 2021). They
first embed queries and documents into vectors. Then, rel-
evant documents are retrieved based on the vector similar-
ity (Zhan et al. 2020; Ni et al. 2022; Karpukhin et al. 2020),
where ANNS and PQ (Jégou, Douze, and Schmid 2011b) are
used to improve the efficiency. With advanced PLMs (De-
vlin et al. 2019; Raffel et al. 2020), higher-quality represen-
tations are obtained, leading to better results. Besides, nega-
tive sampling strategies have been proposed for better opti-
mization (Zhan et al. 2021b; Xiong et al. 2021; Gao et al.
2021; Guu et al. 2020). Considering the retrieval perfor-
mance may be bounded by the product between single vec-
tors, lightweight interaction layers are introduced to capture
fine-grained matching, such as the multi-vector model (Luan
et al. 2021) and ColBERT (Khattab and Zaharia 2020).

In this paper, we replace the traditional indexes with a
model-based indexer, which can be optimized end-to-end
during the model training.

End-to-End Retrieval. Different from pipelined retrieval
methods relying on a separated index, end-to-end models
without explicit indexes have been applied to retrieval tasks.
GENRE (Cao et al. 2021) retrieves entities by generating
their names through a seq-to-seq model. A blueprint for
model-based IR is proposed in (Metzler et al. 2021), which
aims to embed the knowledge of all documents into a model.
Under this framework, some studies explored the document
retrieval task. Tay et al. (2022) devise DSI to directly out-
put docids for document retrieval. Bevilacqua et al. (2022)
regard all n-grams in the passage as identifiers and gener-
ate relevant words to retrieve documents. Chen et al. (2022)
propose GERE to retrieve evidence by returning sentence
identifiers. We observe that existing works suffer from se-
mantically deficient docids and limited supervised data. In
this paper, we continue to explore a more effective retriever
within this model-centric paradigm.

Methodology
In this paper, we explore the model-centric paradigm for
document retrieval, and attempt to deal with two main tech-
nical difficulties: (1) how to represent docids so that the
model can easily learn the semantics of them for decoding;
(2) how to train the model so as to capture knowledge of
docids for retrieval. To this end, we propose Ultron, an end-
to-end retriever with two elaborate docids and a three-stage
training strategy. We will introduce Ultron in the next parts.

Decoder

Encoder Encoder

Query Documents

Constrained

beam search

Dense Retrieval

Matching

Query

Doc2

Ultron

Vectorized
index

Ranking list Ranking list

Sparse Retrieval

Query Documents

𝑤1 𝑤2 𝑤3
𝐷1
𝐷2
𝐷3
𝐷4

2 1 1

1 0 1

1 1 2

0 1 0

Ranking list

Matching

Inverted
index

Encoder

Docids

Doc4 Doc6

Tokenizer

Figure 1: The comparison between Sparse Retrieval, Dense Retrieval, and Ultron. Traditional retrieval methods follow the
index-retrieve framework, while the Ultron only uses an end-to-end model to accomplish document retrieval. The docids are
generated from the query with a seq-to-seq model, and the ranking list is obtained through the constrained beam search.

Backbone of the Model
Inspired by advanced generative PLMs (Brown et al. 2020;
Raffel et al. 2020), we complete the document retrieval
task in a generative manner through a seq-to-seq model. As
shown in Figure 1, Ultron is implemented under an encoder-
decoder framework, which encodes the input query and de-
codes relevant docids through constrained beam search to
generate a ranking list. Compared with the traditional sparse
and dense retrieval, Ultron turns the matching task into
a generation task, which breaks away from the indexing-
matching workflow. Such a shift eliminates traditional in-
dexes and enables the model to be optimized end-to-end.

Sequence-to-sequence Model. Since the seq-to-seq
structure works well for many generation tasks, we take
advantage of the T5 (Raffel et al. 2020) pre-trained lan-
guage model as our backbone, which is a Transformer-
based (Vaswani et al. 2017) encoder-decoder structure. For
Ultron, we define the basic task as a “text-to-docid” format,
which means the model takes in some text and generates rel-
evant docids (represented as a sequence of tokens). Based on
the query q, the model tries to predict relevant docids with
the highest auto-regressive scores, denoted as:

score(d|q) = pθ(y|q) =
N∏
i=1

pθ(yi|y<i, q), (1)

where y is the string docid of the document d with N to-
kens, and θ is model parameters. Unlike traditional seq-to-
seq tasks, free-form generation might result in an output
string that does not hit any valid docids. We resolve this
problem in the following part.

Constrained Beam Search. Beam search is a typical de-
coding algorithm that improves greedy search. However,
since we need to ensure that the generated docids exist in
the corpus, vanilla beam search cannot meet our needs. Mo-
tivated by (Cao et al. 2021), we apply constrained beam
search to guide the decoder to search in a limited token space
at each step, so as to generate valid docids. Specifically, we
define the constraints based on a prefix tree built on all do-
cid strings. Each node in the tree denotes a specific prefix
sequence, and its child nodes constitute all valid subsequent

www.answers.com/how_did_brian_pillman_die

How did flien brian pillman die?

Best Answer

How did flien Brian pillman die? Brian Pillman died of a
heart attack in his sleep, attributed to a congenital
heart defect he had from birth, combined with years of
steroid, alcohol and drug abuse. He lived How did Brian
Pillman died? suck his winki too ha When did Brian
Pillman die? Brian Pillman died on October 5, 1997 at
the age of 35. Contribution Does Vickey Vendetta have
the Pill Man Song? this song is average with da help of
""Ice Berg"" of Dunk Ryders Trick Daddy Artist straight
shitts on Vickey Vendetta Did Brian Adams die? Well he
died just last month When did Brian Piccolo die? Brian
Piccolo died on June 16, 1970 at the age of 53
Contributions How did Brian mcfadden die?

Helpful Not Helpful

User 8y ago

Encoder

Tokenizer

URL

Title

Body

how, did, f, lien, bri, an,

p, ill, man, die, www,

answers, com
Convert to ID

Product QuantizationDense vector

149, 410, 89, …

92, 111, 32, …

Keyword-based Identifiers

Semantic-based Identifiers

Figure 2: Two types of semantic document identifiers.

tokens. By decoding along the prefix tree, the model can en-
sure that the generated docids exist in the corpus. Finally,
according to the auto-regressive scores during beam search,
the model generates the top-k docids as the ranking result.

Design of Document Identifiers
A natural attribute of document identifiers (docid) is to
distinguish different documents. Intuitively, previous works
have tried to identify documents with a random integer,
called atomic identifiers (Tay et al. 2022; Zhou et al. 2022).
However, they lead to gigantic embedding parameters and
lack semantics. To alleviate this problem, we represent each
docid as a sequence of shareable tokens satisfying two char-
acteristics: uniquely referring to a document and reflecting
the semantic information of the document. Following the
ideas of sparse retrieval and dense retrieval, as shown in Fig-
ure 2, we attempt to represent docids from two perspectives:
keyword-based identifiers and semantic-based identifiers.

Keyword-based Identifiers. Using keywords to repre-
sent the document content is a classic way of sparse retrieval.
Motivated by this, we propose to uniquely identify a docu-
ment with some meaningful keywords. Intuitively, the URL
of a document contains certain semantic information and can
uniquely correspond to this document. This inspires us to
use URLs as docids and generate relevant document URLs
directly for a given query. To facilitate model prediction, we
arrange each part of the URL (split by ‘/’) in reverse order,

Ultron Ultron Ultron

(a) General Pre-train (b) Search-oriented Pre-train (c) Supervised Fine-tune

TermsPassages

Pseudo Queries Ground-Truth Query

Query Generation

Knowledge Extraction

Corpus doc2 Ground-Truth label

How did flien Brian pillman die?
Brian Pillman died of a heart attack
in his sleep, attributed to a
congenital heart defect he had from
birth, combined with years of
steroid, alcohol and drug abuse. He
lived How did Brian Pillman died?
suck his winki too ha When did
Brian Pillman die? Brian Pillman
died on October 5, 1997 at the age
of 35. Contribution Does Vickey
Vendetta have the Pill Man Song?
this song is average with …

User 8y ago

Training Workflow:

doc2

Does Brian pillman

die of a heart attack?

Training

How did Brian

Pillman die?

Represent Docid (PQ)

Cross-entropy loss92, 111, 32, …

Generated Docid Generated Docid Generated Docid

Figure 3: The three-stage training workflow of the Ultron model.

so as to predict the semantic-rich part first, and then predict
the domain name. However, not all URLs provide sufficient
semantic information. To deal with such situations, we in-
corporate the document title to represent docids, defined as:

docidURL =

{
reversed URL, if title length ≤ L,
title + domain, otherwise.

Here L is set to 2 in our experiments. Finally, we can get a
sequence of tokens by T5 tokenizer to represent the docid.

Semantic-based Identifiers. Dense retrieval maps docu-
ments into latent semantic space as dense vectors. In extreme
cases, each dense vector can be used as a unique identifier
to distinguish documents. However, the space of dense vec-
tors is too large to decode. This promotes us to look for a
way to preserve dense vector semantics in a smaller space.
As a classic vector compression method, Product Quantiza-
tion (Jégou, Douze, and Schmid 2011a; Ge et al. 2014; Zhan
et al. 2021a) just meets our needs for designing docids. For
all D-dimensional vectors, it first divides the D-dimensional
space into m groups, and then performs K-means clustering
on each group to obtain k cluster centers. Finally, each vec-
tor can be represented as a set of m cluster ids. Thus, for the
document d, its semantic-based identifier can be defined as:

docidPQ = PQ (Encoder (d)) , (2)

where Encoder(·) is implemented by a pre-trained T5 en-
coder (Ni et al. 2022). For cluster ids of all groups, we regard
them asm×k new tokens and add them into the vocabulary.

Training Workflow
The training of Ultron can be regarded as the process of
building a model-based indexer over the corpus. Through
this process, we expect the model to encode rich semantics
over docids and learn the mapping relations from queries to
relevant docids. However, insufficient supervised click data
makes it hard for the model to learn associations between
queries and docids. This motivates us to construct more self-
supervised query-docid pairs to adapt the model to search

scenarios. As shown in Figure 3, the training of Ultron is di-
vided into three stages: general pre-training, search-oriented
pre-training and supervised fine-tuning. The details of the
three stages are introduced in the following parts.

General Pre-training. The semantic information con-
tained in the document is the basic knowledge of the do-
cid, which is generally useful in IR tasks. To learn such
knowledge, we conduct general pre-training by extracting
self-supervised signals from the corpus. Specifically, term
sequences are extracted from the document content to con-
struct the mapping relations from text to docid. We conduct
two simple but effective strategies to achieve this.

First, inspired by previous studies that use passage-level
evidence for document ranking (Callan 1994), we seg-
ment the document into passages by fixed-size windows,
and construct passage-to-docid samples for model train-
ing. Formally, given a document containing n terms, i.e.
{t1, t2, ..., tn}, we can extract a batch of training pairs with
length of size s, such as:

passage : {ti, ti+1, ..., ti+s} −→ docid, (3)

where i is any starting position and is set at intervals of s.
Second, the importance of each word in a document

for its semantic representation is different (Robertson and
Zaragoza 2009). Thus, we can select some important words
based on tf-idf weights as a term set to reflect the key se-
mantics of the document. We have:

terms : {ti, ..., tj , ..., tk} −→ docid, (4)

where ti, tj , tk are terms selected from the document.
Search-oriented Pre-training. After general pre-

training, the model already understands the basic semantics
of each docid, but we observe that this is not enough for
the model to perform well on document retrieval. In other
words, in addition to the semantic knowledge of documents,
the model needs to further learn the associations between
queries and docids. To adapt the model to search scenarios,
we further conduct search-oriented pre-training, which

generates pseudo queries based on the corpus and learns the
mapping relations from queries to docids.

Following DocT5Query (Nogueira, Lin, and Epistemic
2019), we first train a query generator over supervised click
data based on a T5 model. Then, for a document, we take the
first passage as the input, and the query generator outputs k
predicted queries with beam search, i.e. Q = {q1, ..., qk}.
Finally, by training over pseudo query-to-docid samples, our
model learns the mapping relations from query-like strings
to docids, implementing the adaptation from general tasks to
retrieval tasks. Formally, the training pairs are formed as:

pseudo query : qi −→ docid, i ∈ {1, ..., k}. (5)

Supervised Fine-tuning. After general and search-
oriented pre-training, our model has certain knowledge and
retrieval ability over docids. In order to adapt the model to
specific data distribution of the downstream dataset, we fur-
ther use supervised data to finetune the model. Specifically,
the supervised data is query-relevant docid pairs. By train-
ing the model on query-to-docid samples, it is aware of rich
knowledge for document retrieval.

Since the above training tasks are unified in a “text-to-
docid” format, we complete the three-stage training of Ul-
tron based on the standard seq-to-seq objective, i.e., maxi-
mizing the target sequence likelihood with teacher forcing.
Concretely, for the input sequence q, the generation objec-
tive can be formalized as:

L = argmax
θ

∑
i

log pθ(yi|y<i, q), (6)

where pθ(yi|y<i, q) is the generation probability of token yi
based on the given input. The parameters are optimized by
the cross-entropy loss and the AdamW optimizer.

Experimental Settings
Datasets
We experiment with the following two public datasets for
document retrieval.

MS MARCO Document Ranking1 (Nguyen et al. 2016)
is a large collection of queries and web-pages. Following the
previous work (Zhou et al. 2022), we construct a document
subset sampled from the labeled documents, and use their
corresponding queries for training. There are about 320k
documents and 360k query-document pairs in this subset.

Natural Question 320K2 (Kwiatkowski et al. 2019) is
a public dataset. Each piece of data contains a real ques-
tion and a Wikipedia article to answer this question. We use
URLs to deduplicate documents in the corpus and the col-
lection remains about 231k articles with 307k training pairs
and 7.8k test queries. More details of data processing are
introduced in supplementary materials.

Baselines
For comparison, we select three classes of baseline models.

1https://microsoft.github.io/msmarco/Datasets
2https://ai.google.com/research/NaturalQuestions/download

(1) Sparse Retrieval. These methods score candidate
documents based on the weight of appearing query terms.
BM25 (Robertson and Zaragoza 2009) uses the tf-idf fea-
ture to measure term weights, implemented under Lucene.
DocT5Query (Nogueira, Lin, and Epistemic 2019) expands
a document with possible queries predicted by a finetuned
T5 (Raffel et al. 2020) with this document as the input.

(2) Dense Retrieval. We mainly focus on the dual en-
coder framework with large-scale PLMs as the backbone.
Two implementations with different underlying encoders,
i.e. RepBERT (Zhan et al. 2020) and Sentence-T5 (Ni et al.
2022) are considered. DPR (Karpukhin et al. 2020) samples
hard negatives for optimization.

(3) End-to-end Retrieval. DSI (Tay et al. 2022) uses a
text-to-text model to map queries to relevant docids. We re-
produce DSI-Atomic and DSI-Semantic for comparison. Dy-
namicRetriver (Zhou et al. 2022) deploys a Docid decoder
with a trainable vector for each document. We reproduce the
OverDense variant. Ultron-Atomic, Ultron-URL and Ultron-
PQ are three variants of Ultron with atomic docids, URL
docids and PQ docids respectively.

We evaluate the performance of all models on the
common evaluation metrics for document retrieval Recall
(R@1/5/10), and Mean Reciprocal Rank (MRR@10).

Implementation Details
In our experiments, BERT corresponds to the pre-trained
bert-base-uncased one and T5 is t5-base, both from hugging-
face transformers. As for RepBERT, Sentence-T5 and DPR,
the max length of input sequences is 512, and the batch size
is 48. We follow the settings of DynamicRetriver (Zhou et al.
2022) and DSI (Tay et al. 2022) in their original papers. For
Ultron, the max length of URL docids is 100, the hyper-
parameter of PQ is m = 24, k = 256, and the batch size
is set as 128. During the three-stage training, we utilize 10
pieces of passage, 1 key term sequence, 10 pseudo queries
and 1 annotated finetune query for each document, and the
learning rate is 1e-3. During inference, the beam size is 10.
All models are trained with the AdamW (Loshchilov and
Hutter 2019) optimizer. More implementation details and
source code are provided in supplementary materials.

Experimental Results
In this section, we conduct extensive experiments to answer
the following research questions:

• RQ1: How does Ultron perform on document retrieval
compared to existing static index-based methods?

• RQ2: How does each stage of the three-stage training
workflow contribute to the final retrieval results?

• RQ3: Does Ultron have lower memory overhead and
higher inference speed than existing retrieval methods?

• RQ4: What are the advantages of Ultron’s document iden-
tifiers over the semantic cluster docids in DSI?

Overall Performance (RQ1)
We present the overall results in Table 1, and draw several
conclusions as follows to answer RQ1.

https://microsoft.github.io/msmarco/Datasets
https://ai.google.com/research/NaturalQuestions/download

Table 1: Overall results. “(-)” and “(↑)” indicates whether the params will increase as the corpus size increases. The best results
are shown in bold and the best results of (-) models are underlined. “‡” and “†” denotes the result is significantly better than all
baselines and (-) baselines in t-test with p<0.05.

Model Params
MS MARCO Natural Questions (NQ)

R@1 R@5 R@10 MRR@10 R@1 R@5 R@10 MRR@10

Sparse Retrieval

BM25 - 0.1894 0.4282 0.5507 0.2924 0.1406 0.3691 0.4793 0.2360
DocT5Query - 0.2327 0.4938 0.6361 0.3481 0.1907 0.4388 0.5583 0.2955

Dense Retrieval

RepBERT 220M (-) 0.2525 0.5841 0.6918 0.3848 0.2257 0.5220 0.6565 0.3513
Sentence-T5 220M (-) 0.2727 0.5891 0.7215 0.4069 0.2251 0.5200 0.6512 0.3495
DPR 220M (-) 0.2908 0.6275 0.7313 0.4341 0.2278 0.5344 0.6858 0.3592

End-to-end Retrieval

DSI-Semantic 250M (-) 0.2574 0.4358 0.5384 0.3392 0.1323 0.3701 0.4828 0.2377
DSI-Atomic 495M (↑) 0.3247 0.6301 0.6992 0.4429 0.2023 0.4872 0.6146 0.3216
DynamicRetriever 495M (↑) 0.2904 0.6422 0.7315 0.4253 0.2263 0.5353 0.6876 0.3608

Ultron-URL 248M (-) 0.2957† 0.5643 0.6782 0.4002 0.3378‡ 0.5420‡ 0.6705 0.4251‡

Ultron-PQ 257M (-) 0.3155† 0.6398† 0.7314 0.4535‡ 0.2564‡ 0.5309 0.6575 0.3712‡

Ultron-Atomic 495M (↑) 0.3281‡ 0.6490‡ 0.7413‡ 0.4686‡ 0.2543‡ 0.5482‡ 0.6953‡ 0.3859‡

(1) In most scenarios, the end-to-end retrieval models out-
perform static index-based retrieval methods, with paired
t-test at p<0.05 level. On MS MARCO, Ultron-PQ ex-
ceeds DPR by 8.5% on R@1 and 4.5% on MRR@10.
Ultron-Atomic achieves the best performance on both the
MS MARCO and NQ datasets. We think the advantage of
end-to-end retrievers lies in that their indexing and retrieval
stages can be jointly optimized end-to-end to better fit the fi-
nal retrieval target. Furthermore, our proposed Ultron model
performs the best among all end-to-end retrievers. This is
thanks to our designed docids rich in semantics and the
three-stage training workflow that better captures the map-
ping relations from queries to docids to fit search scenarios.

(2) Comparing the three end-to-end retrievers with differ-
ent semantic docids, the results of Ultron-URL and Ultron-
PQ are better than that of DSI-Semantic. For the NQ dataset,
Ultron-URL improves DSI-Semantic by 38.9% on R@10.
This indicates that our devised docids can embed richer se-
mantic information to facilitate model training and decod-
ing. On MS MARCO dataset, Ultron-URL is inferior to
Ultron-PQ. Ultron-URL takes URLs as docids and tends to
capture the semantic knowledge related to these keywords.
Some noises in URLs, such as numbers and symbols, may
affect capturing semantics. Whereas the PQ docids are gen-
erated from the representation of the entire document, thus
better associated with the document knowledge.

(3) End-to-end retrievers with atomic docids (including
DSI-Atomic, DynamicRetriver and Ultron-Atomic) achieve
better results than those with semantic docids (Ultron-
PQ/URL) on most metrics. This indicates that more parame-
ters make it easier to distinguish different documents. In ad-
dition, Ultron-Atomic learns more information from pseudo
query-docid pairs, outperforming DSI-Atomic and Dynami-
cRetriever. However, this kind of docids could lead to gi-

Table 2: Ablation study of the three-stage training workflow.

Model
MS MARCO Natural Questions

MRR@10 R@10 MRR@10 R@10

Ultron-URL 0.4002 0.6782 0.4251 0.6705

w/o general pretrain 0.3856 0.6321 0.3587 0.6608
w/o search-oriented 0.3341 0.5211 0.3071 0.6147
w/o finetune 0.3477 0.5693 0.3504 0.6405

Ultron-PQ 0.4535 0.7314 0.3712 0.6575

w/o general pretrain 0.4099 0.6968 0.3328 0.6327
w/o search-oriented 0.3445 0.5730 0.2427 0.5220
w/o finetune 0.4176 0.7023 0.3522 0.6386

gantic parameters and memory burden, especially when the
number of documents increases. The semantic docids using
sharable tokens have the potential to alleviate these issues.

In summary, these results indicate that our end-to-end re-
triever Ultron with semantic-richer document identifiers
is promising for document retrieval tasks.

Study of Training Workflow (RQ2)
In this paper, we design a three-stage training workflow for
Ultron. To verify the effects of each training stage on the
final results (RQ2), we conduct an ablation study to remove
one training stage at one time and observe the impacts on
document retrieval. The results are shown in Table 2.

We find that the removal of each training stage will dam-
age the results on all evaluation metrics. Concretely, re-
moving the search-oriented pre-training causes the biggest
drop in overall results. This indicates that the pseudo query-
docid pairs significantly enhance the model’s performance

0 10 20 30 40 50 60
Epoch

0.0

0.1

0.2

0.3

0.4
M
RR

@
10

General Pre-train Search-oriented Fine-tuning

Ultron-PQ
Ultron-URL
DocT5Query
DPR

Figure 4: Training curves on MS MARCO dataset.

Table 3: Experiments about the memory cost and efficiency.

Model Memory Latency R@1

DocT5Query 3.82MB 5.63ms 0.2327
DPR 980MB 18.87ms 0.2908

Ultron-Atomic 0 20.31ms 0.3281
Ultron-URL 51.0MB 13.75ms 0.2957
Ultron-PQ 69.6MB 8.90ms 0.3155

on search tasks. Meanwhile, the general pre-training also
contributes to the final results. This stage is dedicated to
gaining the document knowledge of each docid. After re-
moving the supervised fine-tuning, the performance on doc-
ument retrieval drops a lot. This result confirms the necessity
of the only supervised stage and its consequence of learning
more robust associations from queries to docids.

To illustrate the effects of each training stage in a finer-
grained manner, we plot the training curve on MS MARCO
with MRR@10 against the training epochs, shown in Fig-
ure 4. With each stage, the model gradually captures knowl-
edge to better complete the document retrieval task. Partic-
ularly, the general pre-training contributes more to Ultron-
PQ. A possible reason is that Ultron-PQ adds some new to-
kens to the vocabulary, thus general pre-training is necessary
to understand the meaning of these tokens.

Study of Memory and Efficiency (RQ3)
Since document retrieval is a critical step in practical search
applications, lower memory overhead and higher efficiency
are necessary. We conduct experiments to compare the mem-
ory cost and inference latency of Ultron, DocT5Query, and
DPR with brute-force search on MS MARCO.

Observing the results in Table 3, Ultron has a signifi-
cant reduction of memory and inference latency compared
to the DPR model, while achieving better results. Specifi-
cally, Ultron only needs to store the prefix tree, which spends
90% less memory than the vectorized index of DPR. Most
importantly, Ultron is more efficient than dual encoders as
the latency drops from 18.87ms to 8.90ms with regard to
320K corpus size. Although the ANN approach can speed up
dense retrieval, the latency of the dual encoder models will
increase with the expansion of the corpus. But for Ultron,
relevant docids are directly generated by the model through
constrained beam search, where the speed is only related to
the layer and width of the prefix tree.

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0

100

200

300

400

500

600

700

800

Co
un

t

DSI-Semantic
Ultron-PQ

Figure 5: Distribution of similarity between documents.

Comparison of Different Docids (RQ4)
Different docid representations will affect the inference dif-
ficulty of the end-to-end retriever. To observe the superior-
ity of our designed semantic docids, we compare the do-
cids used in DSI-Semantic and Ultron-PQ, which are both
encoded based on pre-calculated document embeddings.
Specifically, we randomly select 100 documents from the
set of docids with the same prefixes (length = 2), and cal-
culate the similarity between the embeddings of every two
documents. We divide the bar at 0.025 intervals, and count
the number of document pairs that fall in each range.

From Figure 5, it can be seen that the distribution of sim-
ilarity between documents generally obeys normal distribu-
tion. The document embeddings of Ultron-PQ show higher
consistency, which indicates that our semantics-based iden-
tifiers are more inclined to assign the same prefix to similar
documents. We believe this is more conducive to the con-
vergence of the model. Conversely, if similar documents are
assigned different prefixes, the training and inference of the
model will be more difficult and confusing.

Limitation and Future Work
Although we have achieved certain results in the model-
centric paradigm, Ultron still faces several challenges to
overcome. First, extending the model to web scale puts for-
ward requirements for the design of the model-based indexer
with higher capacity. Second, how to add new coming doc-
uments to the model-based indexer remains unexplored. On
the basis of Ultron, there is plenty of room for future explo-
ration. (1) We can combine the advantages of different do-
cids or devise better docids to reinforce the model capacity
for massive webpages. (2) A more reasonable model-based
index structure, or the fusion of traditional and model-based
indexes can be explored to deal with new documents.

Conclusion
In this work, we explore a novel model-centric paradigm for
document retrieval. The model Ultron breaks away from the
traditional index-based methods by encoding the knowledge
of docids into an end-to-end model. Under the T5 backbone,
we devise two types of semantic document identifiers, and a
three-stage training strategy to optimize the model and adapt
it to search scenarios. Experiments on two public datasets in-
dicate the superiority of the model-based indexer on retrieval
performance and efficiency over existing baselines.

References
Bevilacqua, M.; Ottaviano, G.; Lewis, P.; Yih, W.; Riedel,
S.; and Petroni, F. 2022. Autoregressive Search Engines:
Generating Substrings as Document Identifiers. CoRR,
abs/2204.10628.
Blanco, R.; and Lioma, C. 2012. Graph-based term weight-
ing for information retrieval. Inf. Retr., 15(1): 54–92.
Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan,
T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter,
C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.;
Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford,
A.; Sutskever, I.; and Amodei, D. 2020. Language Models
are Few-Shot Learners. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Infor-
mation Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual.
Callan, J. P. 1994. Passage-Level Evidence in Document
Retrieval. In SIGIR, 302–310. ACM/Springer.
Cao, N. D.; Izacard, G.; Riedel, S.; and Petroni, F. 2021.
Autoregressive Entity Retrieval. In ICLR. OpenReview.net.
Chen, J.; Zhang, R.; Guo, J.; Fan, Y.; and Cheng, X. 2022.
GERE: Generative Evidence Retrieval for Fact Verification.
CoRR, abs/2204.05511.
Dai, Z.; and Callan, J. 2019. Context-Aware Sentence/Pas-
sage Term Importance Estimation For First Stage Retrieval.
CoRR, abs/1910.10687.
Dai, Z.; and Callan, J. 2020. Context-Aware Document
Term Weighting for Ad-Hoc Search. In WWW ’20: The Web
Conference 2020, Taipei, Taiwan, April 20-24, 2020, 1897–
1907. ACM / IW3C2.
Dehghani, M.; Zamani, H.; Severyn, A.; Kamps, J.; and
Croft, W. B. 2017. Neural Ranking Models with Weak Su-
pervision. In Proceedings of the 40th International ACM SI-
GIR Conference on Research and Development in Informa-
tion Retrieval, Shinjuku, Tokyo, Japan, August 7-11, 2017,
65–74. ACM.
Devlin, J.; Chang, M.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), 4171–4186. Asso-
ciation for Computational Linguistics.
Gao, L.; Dai, Z.; Chen, T.; Fan, Z.; Durme, B. V.; and Callan,
J. 2021. Complement Lexical Retrieval Model with Seman-
tic Residual Embeddings. In Advances in Information Re-
trieval - 43rd European Conference on IR Research, ECIR
2021, Virtual Event, March 28 - April 1, 2021, Proceedings,
Part I, volume 12656 of Lecture Notes in Computer Science,
146–160. Springer.
Ge, T.; He, K.; Ke, Q.; and Sun, J. 2014. Optimized Prod-
uct Quantization. IEEE Trans. Pattern Anal. Mach. Intell.,
36(4): 744–755.

Guo, J.; Fan, Y.; Ai, Q.; and Croft, W. B. 2016. A Deep
Relevance Matching Model for Ad-hoc Retrieval. In Pro-
ceedings of the 25th ACM International Conference on In-
formation and Knowledge Management, CIKM 2016, Indi-
anapolis, IN, USA, October 24-28, 2016, 55–64. ACM.
Guu, K.; Lee, K.; Tung, Z.; Pasupat, P.; and Chang, M.
2020. REALM: Retrieval-Augmented Language Model Pre-
Training. CoRR, abs/2002.08909.
Jégou, H.; Douze, M.; and Schmid, C. 2011a. Product Quan-
tization for Nearest Neighbor Search. IEEE Trans. Pattern
Anal. Mach. Intell., 33(1): 117–128.
Jégou, H.; Douze, M.; and Schmid, C. 2011b. Product Quan-
tization for Nearest Neighbor Search. IEEE Trans. Pattern
Anal. Mach. Intell., 33(1): 117–128.
Karpukhin, V.; Oguz, B.; Min, S.; Lewis, P. S. H.; Wu, L.;
Edunov, S.; Chen, D.; and Yih, W. 2020. Dense Passage Re-
trieval for Open-Domain Question Answering. In EMNLP
(1), 6769–6781. Association for Computational Linguistics.
Khattab, O.; and Zaharia, M. 2020. ColBERT: Efficient and
Effective Passage Search via Contextualized Late Interac-
tion over BERT. In Proceedings of the 43rd International
ACM SIGIR conference on research and development in In-
formation Retrieval, SIGIR 2020, Virtual Event, China, July
25-30, 2020, 39–48. ACM.
Kwiatkowski, T.; Palomaki, J.; Redfield, O.; Collins, M.;
Parikh, A. P.; Alberti, C.; Epstein, D.; Polosukhin, I.; Devlin,
J.; Lee, K.; Toutanova, K.; Jones, L.; Kelcey, M.; Chang, M.;
Dai, A. M.; Uszkoreit, J.; Le, Q.; and Petrov, S. 2019. Nat-
ural Questions: a Benchmark for Question Answering Re-
search. Trans. Assoc. Comput. Linguistics, 7: 452–466.
Loshchilov, I.; and Hutter, F. 2019. Decoupled Weight De-
cay Regularization. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net.
Luan, Y.; Eisenstein, J.; Toutanova, K.; and Collins, M.
2021. Sparse, Dense, and Attentional Representations for
Text Retrieval. Trans. Assoc. Comput. Linguistics, 9: 329–
345.
Metzler, D.; Tay, Y.; Bahri, D.; and Najork, M. 2021. Re-
thinking search: making domain experts out of dilettantes.
SIGIR Forum, 55(1): 13:1–13:27.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Ef-
ficient Estimation of Word Representations in Vector Space.
In 1st International Conference on Learning Representa-
tions, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013,
Workshop Track Proceedings.
Mitra, B.; and Craswell, N. 2018. An Introduction to Neural
Information Retrieval. Found. Trends Inf. Retr., 13(1): 1–
126.
Nguyen, T.; Rosenberg, M.; Song, X.; Gao, J.; Tiwary, S.;
Majumder, R.; and Deng, L. 2016. MS MARCO: A Human
Generated MAchine Reading COmprehension Dataset. In
Proceedings of the Workshop on Cognitive Computation: In-
tegrating neural and symbolic approaches 2016 co-located
with the 30th Annual Conference on Neural Information

Processing Systems (NIPS 2016), Barcelona, Spain, Decem-
ber 9, 2016, volume 1773 of CEUR Workshop Proceedings.
CEUR-WS.org.
Ni, J.; Ábrego, G. H.; Constant, N.; Ma, J.; Hall, K. B.; Cer,
D.; and Yang, Y. 2022. Sentence-T5: Scalable Sentence
Encoders from Pre-trained Text-to-Text Models. In Mure-
san, S.; Nakov, P.; and Villavicencio, A., eds., Findings of
the Association for Computational Linguistics: ACL 2022,
Dublin, Ireland, May 22-27, 2022, 1864–1874. Association
for Computational Linguistics.
Nogueira, R.; Lin, J.; and Epistemic, A. 2019. From
doc2query to docTTTTTquery. Online preprint, 6.
Nogueira, R.; Yang, W.; Lin, J.; and Cho, K. 2019.
Document Expansion by Query Prediction. CoRR,
abs/1904.08375.
Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global Vectors for Word Representation. In Proceedings
of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special Interest Group
of the ACL, 1532–1543. ACL.
Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Exploring
the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. J. Mach. Learn. Res., 21: 140:1–140:67.
Robertson, S. E.; and Zaragoza, H. 2009. The Probabilistic
Relevance Framework: BM25 and Beyond. Found. Trends
Inf. Retr., 3(4): 333–389.
Rousseau, F.; and Vazirgiannis, M. 2013. Graph-of-word
and TW-IDF: new approach to ad hoc IR. In 22nd ACM
International Conference on Information and Knowledge
Management, CIKM’13, San Francisco, CA, USA, October
27 - November 1, 2013, 59–68. ACM.
Tay, Y.; Tran, V. Q.; Dehghani, M.; Ni, J.; Bahri, D.; Mehta,
H.; Qin, Z.; Hui, K.; Zhao, Z.; Gupta, J. P.; Schuster, T.;
Cohen, W. W.; and Metzler, D. 2022. Transformer Memory
as a Differentiable Search Index. CoRR, abs/2202.06991.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is All you Need. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, 5998–6008.

Xiong, L.; Xiong, C.; Li, Y.; Tang, K.; Liu, J.; Bennett, P. N.;
Ahmed, J.; and Overwijk, A. 2021. Approximate Nearest
Neighbor Negative Contrastive Learning for Dense Text Re-
trieval. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net.

Zhan, J.; Mao, J.; Liu, Y.; Guo, J.; Zhang, M.; and Ma,
S. 2021a. Jointly Optimizing Query Encoder and Product
Quantization to Improve Retrieval Performance. In CIKM,
2487–2496. ACM.

Zhan, J.; Mao, J.; Liu, Y.; Guo, J.; Zhang, M.; and Ma, S.
2021b. Optimizing Dense Retrieval Model Training with
Hard Negatives. In SIGIR ’21: The 44th International ACM
SIGIR Conference on Research and Development in Infor-
mation Retrieval, Virtual Event, Canada, July 11-15, 2021,
1503–1512. ACM.

Zhan, J.; Mao, J.; Liu, Y.; Zhang, M.; and Ma, S. 2020. Rep-
BERT: Contextualized Text Embeddings for First-Stage Re-
trieval. CoRR, abs/2006.15498.

Zheng, G.; and Callan, J. 2015. Learning to Reweight Terms
with Distributed Representations. In Proceedings of the 38th
International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, Santiago, Chile, August
9-13, 2015, 575–584. ACM.

Zhou, Y.; Yao, J.; Dou, Z.; Wu, L.; and Wen, J. 2022.
DynamicRetriever: A Pre-training Model-based IR Sys-
tem with Neither Sparse nor Dense Index. CoRR,
abs/2203.00537.

	Introduction
	Related Work
	Methodology
	Backbone of the Model
	Design of Document Identifiers
	Training Workflow

	Experimental Settings
	Datasets
	Baselines
	Implementation Details

	Experimental Results
	Overall Performance (RQ1)
	Study of Training Workflow (RQ2)
	Study of Memory and Efficiency (RQ3)
	Comparison of Different Docids (RQ4)
	Limitation and Future Work

	Conclusion

