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Given a user, a personalized search model relies on her historical behaviors, such as issued queries and their clicked documents,

to generate an interest proile and personalize search results accordingly. In interest proiling, most existing personalized search

approaches use łstaticž document representations as the inputs, which do not change with the current search. However, a

document is usually long and contains multiple pieces of information, a static ix-length document vector is usually insuicient

to represent the important information related to the original query or the current query, and makes the proile noisy and

ambiguous. To tackle this problem, we propose building dynamic and intent-oriented document representations which

highlight important parts of a document rather than simply encode the entire text. Speciically, we divide each document into

multiple passages, and then separately use the original query and the current query to interact with the passages. Thereafter

we generate two łdynamicž document representations containing the key information around the historical and the current

user intent, respectively. We then proile interest by capturing the interactions between these document representations, the

historical queries, and the current query. Experimental results on a real-world search log dataset demonstrate that our model

signiicantly outperforms state-of-the-art personalization methods.

CCS Concepts: · Information systems→ Personalization.

Additional Key Words and Phrases: Personalized Search, User Interest, Document Representation

1 INTRODUCTION

Web search has become an activity most of us engage in by issuing a query to a search engine to get interested
content. However, studies have shown that the query could be ambiguous, and diferent users have diferent
interests under the same query [12, 28]. By taking diferent users’ information needs into consideration, personal-
ized search is an efective way to address the above problems. It utilizes the user’s historical search behaviors to
build and update an user proile relecting her interest, so that the search engine could return an adapted result
list according to the proile. Many traditional methods of personalized search focus on analyzing user query
logs to extract personalized features. They mainly extract click-based features and topic-based features to model
user interest [2ś4, 8, 17, 20, 43]. With the emergence of deep learning, many researchers attempted to better
build user interest proiles by automatically learning the representations of queries, documents, and users to
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Fig. 1. The comparison of previous user interest modeling strategy and ours. � refers to the �th search behavior in the user
history. Existing methods ignore the impact of either the current search or the corresponding search during the document
representation stage.

capture search interests from sequential or contextual perspective [19, 29, 31, 60, 65]. These works have shown
signiicant improvement in search quality.

Most previous studies aim at building a user interest proile by modeling the history and highlighting relevant
behaviors based on the current query. They then re-rank the search results by calculating similarities between
the user proile and candidate documents. Each document (i.e., each historically clicked document and candidate
document) is represented in a static ix-length vector. For example, Ge et al. [19] used the weighted average
of the word representations to represent a document. Zhou et al. [66] used transformers to further encode the
document together with the corresponding query to build the past interest, but they still simply took the ixed
document title to represent a document. As the general user interest modeling paradigm illustrated in Figure 1(a),
no matter which encoding method is used, the document representation is only dependent on the document
itself, regardless of the corresponding historical query leading to the click, and also the current query. We argue
such a static representation is problematic in personalized search. Since a document is usually long and contains
multiple pieces of diverse information, the static ix-length document vectors used in the above methods would
inevitably include broad and noisy information about the document, and make the inal user proile cluttered and
inaccurate. Because of this, we need to represent a document in a more efective way ś paying more attention to
the important parts and de-emphasizing other parts.

In fact, the important pieces of the same document when modeling historical and current interests are rather
diferent. When a historical query is issued, the user will most probably pay attention to the passages relevant
to the query, other than all content in the document she clicked. In the meanwhile, in the future when the
user looks for new information, the historical information pieces that are relevant to her new information need
are also important. An example is shown in Figure 2. At one search in the history, the user enters the query
łiPhonež and clicks the document with a description of the phone in the irst lines shown in this example. In
the current search, the user would like to know information about łApple chipž perhaps because the content in
the latter part of the clicked document triggers her interest or simply reveals another aspect of her interest. In
either case, the clicked document � should be considered diferent for its contributions to the depicting of the
current intent. These observations of intent variations on documents inspire us to build intent-oriented document
representations for better user interest proiling. In this paper, we attempt to explicitly extract the two sides
of information during the document representation stage. The general idea is illustrated in Figure 1(b). Unlike
previous studies, we build dynamic user interest by building two intent-oriented document representations for
each document: (1) a document representation concentrated on the corresponding user intent when it was clicked.
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Clicked document 

iPhone. Which iPhone is right for you?
…
Apple M 1 Pro chip. 8 - core 
CPU with 6  performance cores and 
2 efficiency cores.

Historical Query :
iPhone

iPhone. Which iPhone is right 
for you?

Apple M 1 Pro chip. 8 - core 
CPU with 6  performance 
cores and 2 efficiency cores.

Current intent 

Current Query:
Apple chip

Historical intent 

       
   

Candidate Document 

Apple chips are chips or crisps that are
prepared using apple.

1

What Is the Apple M1 Chip?
A processor that Apple developed in-
house powers the newest Macs and 
iPad Pro. 

Candidate Document 2

Fig. 2. Example user search behavior. The clicked document contains pieces related to the corresponding intent and pieces
related to the current intent. The current intent-related pieces extracted from the clicked document provide supplemental
information to clarify the current needs, as well as boost the relevance of candidate document 2.

We use the corresponding query leading to the click to guide the generation of this representation. (2) a document
representation focusing on the user’s current search intent. Accordingly, we use the current query to highlight
the relevant parts of the document. We argue that by using these types of intent-oriented representations, we can
better model historical behaviors and consequently generate better user proiles.
More speciically, we propose a personalized model DIMPS (Dynamic Interest Modeling for Personalized

Search), which builds dynamic document representations with the inluence of the user’s historical intent and
the current intent. It consists of two modules: a dynamic intent-oriented document encoder and a dynamic
interest modeling module. (1) The dynamic intent-oriented document encoder module generates two types
of dynamic document representations separately centered on the historical intent and the current intent. By
using the historical query and the current query as guidance, the relevant information pieces at the passage
level in the document are dynamically captured. (2) After the dynamic document representations are generated,
the dynamic interest modeling module then uses transformers to capture the full interactions between these
historical queries and their clicked documents, the current query, and also the candidate document. In this way, the
current query plays a key role in extracting features from the behavior sequence for the interest proile depicting,
while the candidate document can directly attend to the intents revealed in the historical representations for its
relevance estimation. (3) At last, we learn a dynamic user proile and calculate a ranking score for the candidate
document based on this.

Experimental results on a real-world search log dataset demonstrate that our model signiicantly outperforms
the state-of-the-art personalization methods. With the dynamic document representations, we can model user
interest more accurately.

In conclusion, our main contributions lie in the three aspects:
(1) We propose building dynamic intent-oriented interests to model more accurate user proiles for personalized

web search.
(2) We devise a dynamic intent-oriented document encoding module to generate dynamic representations

separately centered on the corresponding historical intent and the current intent.
(3) We apply a dynamic interest modeling module that attends the interactions among the search sequence,

the current query, and the candidate document to dynamically depict the user’s current search interest.
(4) We design a model-free document pruning algorithm that extracts interest-related features from documents.

It facilitates the learning of user interest for traditional methods using entire document text.

ACM Trans. Inf. Syst.
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The rest of paper is organized as follows. In Section 2 we summarize related works. In Section 3 we describe
the proposed dynamic interest modeling strategy in detail. The experimental setup is discussed in Section 4. In
Section 5 and Section 6 we present and analyze the results. The conclusion is drawn in Section 7.

2 RELATED WORK

2.1 Personalized Search

Some traditional personalized works focus on modeling click behaviors in query logs [17, 48]. For example, Dou
et al. [17] proposed the P-Click model to calculate the click probability by counting historical click numbers on
documents. Moreover, some works [8, 20, 49, 55] view topic-based features as their essential features, and employ
models as Latent Dirichlet Allocation LDA [6, 55] to build user proile in topic space. Later, some researchers
utilized learning to rank algorithms to combine these features. Great improvement has been shown in search
results with the utilization of the advanced ranking algorithm LambdaMART [4, 57].

However, features adopted in most traditional personalized methods sufer from the heavy burden of manually
extracting and the limitation in scope and variety. The emergence of deep learning enables us to automatically learn
distributed representations from query logs. For personalized search, it facilitates the modeling of potential user
interest [15, 31, 52, 60, 62ś64]. A line of works aimed at modeling interest by excavating sequential information.
Ge et al. [19] devised query-aware hierarchical recurrent neural networks to model sequential information
and generated a dynamic user proile with query-aware attention to highlight related interests. Ma et al. [32]
focused on leveraging ine-grained time information associated with user actions. They designed time-aware
LSTM architectures for short-term interest where subtle interest evolution of users are captured, and calculated
re-inding inluences for long-term interest. Some works concentrated on leveraging context information in user
interactions to build interests. Li et al. [29] generated semantic features from in-session contextual information
through deep-learning models, and incorporate those features to current re-ranking models. Zhou et al.[65]
proposed clarifying users’ information needs by encoding history with context-aware representation learning.
The key of the personalized search task is to depict user interest from the history sequence, which evolves

over each time of search behaviors. Properly tackling such dynamic features would beneit the improvement of
ranking results. There exists a group of works that has shown good ability at dealing with dynamic features. Rossi
et al. [38] proposed a Temporal Graph Network for continuous-time graphs represented as sequences of timed
events. With the help of memory modules and graph-based operators, it successfully produces the embedding of
the graph nodes at each time. This network has been experimented on future edge prediction tasks and dynamic
node classiication tasks and has obtained adorable results. Nonetheless, similar attempts have been made in the
ield of community-level information pathway prediction, whose goal is to predict the transmission trajectory of
content across online communities. Jin et al. [22] devised a dynamic graph to capture the temporal variability
across communities and model the time-aware propagation patterns of content information.
However, directly applying these advanced dynamic approaches to personalized web search would sufer a

great performance drop. These approaches focused on capturing the temporal variability, while in personalized
search, clicked documents contain multiple information pieces and cannot relect accurate user intents. Failure in
intent identiication will limit the improvement of these time-aware dynamic approaches. These approaches do
not explicitly address such intent variations and expect the model to automatically extract useful features for the
current search from the whole updated sequence.
In this work, we observe the intents revealed by documents change between historical search and current

search. As a result, we focus on dealing with such dynamics in user intents, rather than the dynamics in temporal
information, to present historical representations with accurate relections of corresponding intents at each time
of search behaviors.

ACM Trans. Inf. Syst.
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In fact, many personalized search tasks have also paid attention to the dynamics of intents over the history
sequence. For example, Ge et al. [19] built dynamic user proiles by using the current query-aware attention to
emphasize important historical behaviors. Zhou et al. [65] joined the current query into transformers to better
capture its correlations with user history. But all the aforementioned personalized search methods merely impose
the impact of the current search upon ixed document representations. This prevents the model from further
identiication of the user intents at diferent searches. Nonetheless, Bi et al.’s study [5] on the personalized product
search task has shown the efectiveness of using the current query to attend user historical interacted items and
current candidate items at a ine-grained level. Although simply migrating such an approach into personalized
web search would limit the performance improvements, the clicked documents not only are too long but also
cannot relect accurate intents, and letting the current query attend to each word from documents is rather
inefective. It still encourages us to pose the impact of varying intents to the details of documents, rather than
the whole content of them.

Based on the idea of capturing dynamics of user intents from more detailed evidence of documents, we devise
an intent-oriented document proiling approach to build a more accurate user proile. In this work, we pose the
inluence of changing queries on document passages which has not been studied by previous personalized web
search works.

2.2 Intent Identification

Query intent identiication has long been actively researched in ad-hoc IR diversity tasks to address query
ambiguity. Diversiication approaches can be broadly categorized by whether or not explicit query intent
representations are used [40]. The intent-explicit approaches formulate the query intents as explicit query aspect
spaces, which are either directly given as genres or formed through techniques like matrix factorization [1, 39, 45].
While the intent-implicit approaches are typically based on inter-document similarity assuming dissimilar
documents address diverse tastes [51, 61].
The notion of user intent was also introduced by Vargas et al. [46] in the recommender systems. It describes

the uncertainty of user interests under the assumption that interests are associated with multiple sides and
subareas. Exploring user intents has been a popular topic in a set of IR tasks. Early studies [46, 54] relies on item
features to model user intents. Vargas et al. [46] considered two scenarios in which item feature data is explicitly
known or can only be obtained through matrix factorization from the user-item preference data. Wasilewski et
al. [54] injected a user perspective into items by incorporating a personalized intent-aware framework into the
item-based recommendation algorithm, which is implemented by applying personalized covariance into the item
similarity measure. Kaya et al. [26] proposed an alternative approach to model user intents without the use of
item features. Instead, they used subsets of liked items, deined as subproiles, to represent aspects of user tastes.
The subproiles are detected based on the nearest neighbors of like items and then sent to a subproile-aware
diversiication framework.
Recent recommendation studies [9, 10, 34, 53] have observed that user demands change as search contexts

evolve and have been making an efort to tackle such dynamics. For session-based recommendation, such
dynamics are captured by exploiting users’ recent behaviors with time information. MCPRN [53] proposed
mixture-channel purpose routing networks where distinct purposes underlying items are learned dynamically
in diferent channels. ICM-SR [34] designed an intent-guided neighbor detector to better select and leverage
collaborative information from correct neighbor sessions. Further, in sequential recommendations where longer
user history is considered, modeling user intents has also been an efective approach. IDSR [9] addressed the
diversity in sequential recommendation with an intent-aware diversiied sequential recommendation model. It
introduced an implicit intent mining module, which includes a multi-intent attention mechanism where attention
functions corresponding to particular intents are employed in parallel, to extract multiple user intents from

ACM Trans. Inf. Syst.
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the user behavior sequence. Further, it designed an intent-aware diversity-promoting loss function to update
the model regarding the diversity task. ICL [10] proposed a general learning paradigm called intent contrastive
learning to leverage latent intents in the sequential recommendation. It models the user intent through a latent
variable and learns the intent representation by learning the distribution function via clustering. Then, it fuses
the learned intents into sequential recommendation models with contrastive self-supervised learning, which
maximizes the mutual information between a view of the sequence and its corresponding intent.

To solve the personalized search problem, we intend to capture the user’s intents in terms of the corresponding
historical and current ones, with the dynamics across time taken into consideration. To be more speciic, we
excavate user intents from clicked and candidate documents by intent-oriented representation. The extracted
intents are attached with temporal information to form an intent sequence for the inal interest modeling.

2.3 Long Document Modeling

As for document modeling in ad-hoc search, dividing documents into ix-sized windows is a regular way to
handle contents with varying lengths. This passage-level evidence makes it possible to greatly outperform
traditional IR systems [11, 30]. Despite the efectiveness of traditional per-passage models, their signiicant
computational cost remains a heavy burden. To address this problem, Hofstätter et al. [21] proposed an Intra-
Document Cascading Model (IDCM) which irst prunes passages of a candidate document with a less expensive
model before running a slower scoring module. In news recommendation, precisely representing the news serves
as a core way for user interest modeling and matching. Gao et al. [18] regarded titles, bodies, and topic categories
as diferent views of news documents, and designed an attentive multi-view learning model to learn uniied news
representations. Wang et al. [50] hierarchically constructed multi-level representations for each news via stacked
dilated convolutions, as an attempt to perform ine-grained interest matching from browsed news and candidate
news. Nonetheless, in personalized search, most studies represent the documents by simply summarizing the
word embeddings of titles or bodies.

In this work, we introduce long document modeling into personalized web search. To reduce the noise and
computational cost, the documents are irst divided into ixed-sized passages and then pruned according to the
relatedness with historical and current intents. We then enhance the intent-related features in the two views to
generate intent-oriented document proiles.

2.4 Atention Mechanisms

Attention mechanisms enable neural networks to model the dependencies in sequences regardless of distances.
Recently many of the IR methods have actively integrated attention mechanisms to extract important features
from long sequences. Wu et al. [56] employed personalized attention in news recommendations to model the
informativeness of each news in terms of diferent user tastes. At the word level, after generating a preference
query from the user ID, they computed the attention weights between news word representations and the
preference query to determine the informativeness of each word. For the whole clicked news sequence, they
again applied personalized attention to determine the informativeness of each piece of news. In personalized
product search, whose object is to deliver adjusted product lists given user history, attention mechanisms could
serve as an efective technique when building interests upon history. For example, Shen et al. [42] calculated the
attention weights of historical behaviors in terms of the current query and the target item respectively, to extract
accurate current interests. Similarly, in personalized web search, Ge et al. [19] assigned query-aware attention
weights for the behavior representations, which are computed from recurrent neural networks, to build dynamic
user proiles.

ACM Trans. Inf. Syst.
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The self-attention mechanism, proposed by Vaswani et al. [47], captures the contributions of each part in the
input sequence for generating the output sequence. It is formulated as:

Atention(�,�,� ) = sotmax(��
�

√
�

)� , (1)

where � , � , and � represent the query keys and values in the input sequence, while 1√
�
is the scaling factor.

Without the conjunction of recurrent networks and convolutions that are commonly used in attentionmechanisms,
it can draw global dependencies with less computational cost. Such natures make it suitable for most sequence
modeling problems in IR tasks. A group of studies utilize the self-attention techniques in text encoding. Dai
et al. [13] leveraged the BERT [16], a self-attention-based language model, to understand the text content of
queries and documents with contextual information. In personalized tasks, Zhou et al. [65] used the transformer
architecture [47], which is built solely upon self-attention mechanisms, to clarify information needs by learning
context-aware representations for queries. Another line of studies models users’ historical behaviors with self-
attention mechanisms. In sequential recommendation, [24] aimed at capturing long-term semantics of user
history even with sparse recent records. The self-attention mechanism perfectly served this goal by identifying
relevant actions from a user’s history. For personalized item search, authors in [27] proposed multi-resolution
attention where relations between queries and past interactions are captured across diferent temporal subspaces.
Through this way, the self-attention mechanism efectively retrieves historical information that is relevant to
users’ current search intents.

In this article, we integrate attentionmechanisms in an end-to-end intent-oriented interest modeling framework.
We propose a document pruning module with query-aware attention to extract corresponding user intents from
documents. We also design an interest modeling module where past behaviors are modeled with self-attention so
that the contributions of each behavior representation for generating the inal interest proile are well captured.

3 METHODOLOGY

Personalized search has signiicantly improved users’ search results by capturing their real information needs for
document re-ranking. As we stated in Section 1, most of the existing methods learn user interests by extracting
features from user behaviors, but their static representations do not distinguish the broad and noisy information
pieces in documents. This further hinders the procedure of learning accurate user interests. In this paper, we
focus on building dynamic intent-oriented document representations to better model user proiles. Speciically,
with the corresponding query and the current query as guidance, intent-oriented document representations
regarding the historical intent and the current intent are generated by the dynamic document encoder. Then, in
the dynamic interest modeling part, we organize these query and document representations into a sequence and
capture their interactions between the current query and the candidate document to depict an interest pattern to
judge the documents’ relevance.
The main notations in this paper are summarized in Table 1. To begin with, the problem is formulated as

follows. Suppose that a user has a search history deined as a sequence of queries and their clicked document
sets. � =

{
(�1, �1), . . . , (�� , �� )

}
, where � is the number of queries. The document set �� consists of a title list

and a body list. Note that a query may have multiple clicked documents, we respectively concatenate their titles
and bodies to form the two lists. Considering a user’s current query � and a candidate document list returned by
the search engine, our objective is to re-rank each document � in the list according to the search history � and
the current query �.

As shown in Figure 3, our proposed model DIMPS consists of three components: (1) dynamic intent-oriented
document encoder; (2) dynamic interest modeling; (3) re-ranking. In the following sections, we will elaborate on
the structure details.

ACM Trans. Inf. Syst.
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Fig. 3. The architecture of our proposed model is named DIMPS. Given each query-document pair in the search log, we
first send it to the intent-oriented document encoder. Passage-level evidence is selected and modeled with the guidance
of the corresponding query and the current query respectively to generate historical intent-oriented representations and
current intent-oriented representations. The details of the document encoder are illustrated in Figure 4. Together with the
historical query representation, the three vectors compose the dynamic behavior representation. We then send them to a
sequence-level transformer to capture their interactions with the current query the and candidate document and learn a
dynamic user interest profile. Finally, we can calculate the candidate document’s ranking score from the learned profile and
additional features.

3.1 Dynamic Intent-oriented Document Encoder

As we stated in Section 1, the ix-length static document representations include much noise hindering us from
capturing real user interests. To solve this problem, we intend to build intent-aware document representations.
Based on the observation that some search behaviors encompass information not only about the corresponding
search but also the future search, for each document we extract features centered on historical and current
intents in two separate parts. Each part is composed of two modules: (1) document pruning, where the body
of each document is divided and further pruned by passage according to the relevance with the historical or
the current intents; (2) document encoding. It aggregates the selected passage-level evidence to relect the
corresponding search intent. At last, we obtain one historical intent-oriented document representation and one
current intent-oriented document representation. The structure of this module is illustrated in Figure 4.

3.1.1 Document Pruning. Documents returned by search engines contain abundant information, but could
have too much noise for the learning of interest-related features. Also, they can be too long to deploy in real
applications. Thus, aimed at extracting intent-oriented parts and reducing the query latency, we devise an oline
document pruning mechanism to extract parts most related to the user’s historical intent and the current intent
respectively. Some previous studies [7, 25] have shown the efectiveness of organizing documents by ix-sized
passages. Moreover, such passage-level evidence has been widely used in ad-hoc search [21, 41]. Similarly, we
divide the document bodies into these passage-level information pieces.

ACM Trans. Inf. Syst.



Intent-oriented Dynamic Interest Modeling for Personalized Web Search • 9

Table 1. Summary of the Main Notations

Notation Description

� user’s historical search sequence
� the number of search behaviors in the user history
� user’s current query
� the candidate document
�� the query of the �th search in the user history
�� the clicked document of the �th search in the user history corresponding to the query ��
�� the title of document ��
��, � the �th passage of document �� selected by our historical intent-oriented document pruning part

�̃�, � the �th passage of document �� selected by our current intent-oriented document pruning part
� the number of passages in each intent-oriented pruned document

q the representation vector of the current query �

C̃ the representation vector of candidate document �
q� the representation vector of the historical query ��
T� the representation vector of title ��
P�, � the representation vector of passage ��, �
P̃�, � the representation vector of passage �̃�, �
D� the historical intent-oriented representation vector of document ��
D̃� the current intent-oriented representation vector of document ��
I� the historical interest sequence formed by historical query and document representations
I the learned user proile

To be speciic, considering a user-issued query �� , we irst join the titles and bodies of its clicked documents,
which may be more than one. For document titles, the irst words of a certain number in the title lists are retained,
denoted as�� . For document bodies, we divide them into multiple partially overlapping windows with a ixed size,
which results in a passage set. As described in Section 1, in this module we aim to build intent-oriented document
representations. Intuitively corresponding queries will be good evidence for selecting intent-related passages.
Thus, the pruning part is implemented by selecting the top � most relevant passages with the corresponding
query. For each passage, we apply TF-IDF and calculate two relevance scores. The procedure for calculating the
relevance score regarding the historical intent can be formulated as follows:

score(��, � , �� ) =
︁

� ∈��
�
(
� | ��, �

)
=

︁

� ∈��

� � �,��,�

�
lg( |� |
� �� + 1

), (2)

where ��, � denotes the �-th passage of the document �� , while tf�,��,� is the count of term � in it. � �� is the corpus
frequency of � . |� | is the length of the corpus, and �� symbolize the corresponding historical query leading to
the document. When calculating the score of the current intent just substitute �� with the current query �. Note
when pruning candidate documents �� is �.

For each document�� , after the pruning stage as we get its title�� and two sets of top� passages:
{
��,1, . . . , ��,� ,

}

and
{
�̃�,1, . . . , �̃�,�

}
, respectively relevant to the historical intent and the current intent. After encoding them with
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…
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Historical Intent-oriented 
Document Representation

Current Intent-oriented 
Document Representation

History Query Current Query

Clicked Document
Fig. 4. The architecture of the dynamic intent-oriented document encoder. It is composed of two parallel parts where
historical intent and current intent are respectively modeled. Given a document, we first send it to two separated pruning
modules where passages are selected according to their relevance with the historical query or the current query. Then the
selected evidence is further encoded with the guidance of the corresponding query to reflect the specific search intent. Finally,
we obtain a historical intent-oriented document representation and a current intent-oriented document representation for
each document.

the Sentence-BERT model [37], we have the pruned document formulated as:

�
�
� =

{
T� ,

{
P�,1, . . . , P�,� ,

}
,
{
P̃�,1, . . . , P̃�,�

}}
. (3)

The pruned results of the candidate document � are similar to that of historical documents. Note that to cut
down the computational cost, during the model implementation, the whole procedure of document pruning is
performed oline.

3.1.2 Document Encoding. As previously discussed, documents have many irrelevant parts that may hinder us
from learning the real search interest. Intuitively, the corresponding queries can serve as guidance for intent-
related feature extraction. Hence we aggregated the passage-level evidence with the inluence of the corresponding
query.
Take the current intent-oriented behavior encoding part as an example. Considering the document �� , we

assign query-aware attention weights based on the current query vector q, which is generated by encoding
the � with the Sentence-BERT model, each current intent-oriented passage-level information pieces (e.g., the

current-intent oriented passages set
{
P̃�,1, . . . , P̃�,�

}
and the title T� denoted as P̃�,�+1 under this scenario) to

further extract current interests. The weights for each passage-level evidence of the document �� are calculated
as follows:

e�, � = � (q, P̃�, � ), (4)
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��, � =
��, �

∑�+1
�=1 ��,�

, (5)

where � (·) indicates the multilayer perceptron (MLP). Then the current intent-oriented document representation

D̃� is computed by summarizing the weighted passage-level vectors:

D̃� =

�+1︁

�=1

��, �e�, � . (6)

The procedure of computing the historical intent-oriented document representation D� is merely the same as
computing the current intent-oriented representation. Just substitute the current query vector q�and current
intent-oriented passage set

{
P�,1, . . . , P�,�

}
for the corresponding historical query vector q and the historical

intent-oriented passage set
{
P̃�,1, . . . , P̃�,�

}
.

Finally, we have generated two dynamic intent-aware representations D� and D̃� for every document �� , and

one dynamic current-intent oriented representation C̃ for the candidate document � . Next, we will organize these
documents with their corresponding queries into a behavior sequence to learn a search pattern and re-rank
documents.

3.2 Dynamic Interest Modeling

So far, we have one query representation and two intent-oriented document representations for each behavior.
Next, we are going to model the interactions among these behaviors through a sequence-level user transformer
to model the user interest proile. Additionally, we regard the combination of the current query and the candidate
document as the predicted current behavior and append it to the behavior sequence. Including the current
query facilitates the learning of features related to the current intent and the building of a more accurate
user proile. In the meantime, directly capturing the relevance between the candidate document and intent-
oriented history representations also beneits the judgment of the candidate document’s relevance with the
user interest. Speciically, irst, to provide the search sequence with sequential information, we assign position
embeddings for each vector. The positions indicate the number of behaviors appearing in the historical sequence.
The larger the number the latter the behavior. In dynamic modeling, the positions of behaviors are used to
indicate the sequential order within the history. Note that the three vectors from one behavior share the same
position embeddings since they are from the same search. At last, we join the historical interest sequence

�� =

{(
q1, D̃1,D1

)
, . . . ,

(
q� , D̃� ,D�

)}
generated from the historical click data with the current query � and the

intent-oriented candidate document representation C̃ and then send them to a transformer encoder. Similarly, we
take the output of the ł[CLS]ž token as the learned dynamic user proile � :

I = TrmCLS
( [
�� , q, C̃, [CLS]

] )
. (7)

3.3 Re-ranking

Furthermore, similar to existing personalization methods [19, 59, 65, 66], we follow the idea of SLTB [4] and
extract traditional click and topic features ��,� for every candidate document. We send the additional features to a
multilayer perceptron (MLP) to compute the ad-hoc relevance score for the document. Next, to generate the inal
ranking score � (� |�, � ) we aggregate the ad-hoc relevance score and the learned user proile I with a MLP � (·)
operation. Speciically, our output is:

� (� |�, � ) = �
(
I, �

(
��,�

) )
. (8)
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Table 2. Statistics of the dataset.

Item Statistics Item Statistics

number of days 58 average query length 3.25
number of users 33,204 number of sessions 97,858
number of queries 267,479 average click number per query 1.19

Until now, we have obtained the inal personalized score � (� |�, � ). In training, we adopt the ranking algorithm
LambdaRank, which is also popular used in modern personalized models like our baselines [19, 59, 65, 66],
in a pair-wise manner. First, we generate training document pairs from query logs with satisfactory clicked
documents as positive samples and skipped documents as negative samples. Our objective is to maximize the
distance between the positive score and the negative score. Hence, we compute the inal loss with the weighted
cross-entropy between the true probability �̄� � and the predicted probability �� � :

���� = −
���� �

�� (�̄� � log(�� � ) + �̄ �� log(� ��
)
), (9)

where the weight �� � is the change of metric when swapping the positions of the candidate document �� and the
candidate document � � . The predicted probability �� � is calculated as follows:

�� � =
1

1 + exp
(
�
(
� � |�, �

)
− � (�� |�, � )

) . (10)

4 EXPERIMENT SETUP

4.1 Dataset

The search log AOL [35] does not provide the documents’ full content. The URLs in the log are from 2006 which are
too old to crawl from the current Web. Besides, as the dataset is not published for academic search, another reason
for its inaccessibility stems from a combination of conidentiality concerns and potential ethical implications
associated with its use. We have prioritized ethical considerations and the protection of individual privacy, which
align with our research principles and ethical guidelines. Hence, we evaluated our model on a real-world dataset
sampled from a commercial search engine, referred to as ‘B dataset’ in the remainder of this paper. The basic
statistics are shown in Table 2. It is a large-scale query log containing two months of click-through data from 1st
January 2013 to 28th February 2013. Each query record is composed of a user ID, a query string, a query issued
time, a session identiier, the top 20 retrieved URLs, their click labels, and dwelling times. We regard documents
with a dwelling time longer than 30 seconds as clicked documents. As for dataset partitioning, we take the irst
six weeks as history and the last two weeks as experimental data. For each user, the split ratio of training and test
set is 4:1 under the measurement of session number in the experiment data, while the last one-ifth sessions of
the training set are taken as validation data. Users with less than 4 sessions in experiment data are abandoned to
ensure an efective division of training and test datasets. Additionally, diferent from previous studies, we extract
the body data of clicked and candidate documents to enrich the behavior information.

4.2 Baselines

To evaluate the performance of our model, we select several state-of-the-art ad-hoc searchmodels and personalized
search models as baselines. They are as follows:

KNRM [58]. It is an ad-hoc model that matches queries and documents based on their interactions by utilizing
kernel-pooling to extract soft-match features.
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Table 3. A Summary of the Baseline Models Discussed in the Article

Model Description Document Representation

Adhoc Search Model

KNRM [58] An ad-hoc model that matches queries
and documents based on their interac-
tions by utilizing kernel-pooling to ex-
tract soft match features.

An embedding layer to map each word
in the document titles.

Conv-KNRM [14] Based on KNRM to model n-gram soft
matches with an additional convolu-
tional layer.

An embedding layer followed by con-
volutional layers where ilters compose
n-grams from document titles.

BERT [36] It concatenates query-document se-
quence and feeds it into the pre-trained
BERT model.

An embedding layer to map each word
in the document titles.

Personalized Search Model

SLTB [4] Based on learning to rank algorithms
with click features, topical features,
time features, and position features.

A representation function to map doc-
ument URLs to sparse vectors, and a
text-based classiier on titles and bod-
ies to obtain topical features.

HRNN [19] It uses hierarchical RNN and query-
aware attention to exploit sequential
information and generate a dynamic
user proile.

Calculated as the weighted average of
the title word representations, which
are mapped by an embedding matrix,
multiplied by TF-IDF weights.

PEPS [59] It enhances personal word embeddings
from the global word embeddings by
taking her individual search history as
the training data.

A global embedding matrix and a per-
sonal embedding matrix to map each
word in the document titles.

HTPS [65] It uses hierarchical transformers to en-
code history with context-aware repre-
sentation learning to disambiguate the
current query.

An embedding layer to map each word
in the document titles.

It applies a self-supervised learning
framework with contrastive sampling
to reduce the dependency of suicient
data.

An embedding layer to map each word
in the document titles and bodies fol-
lowed by a transformer-based encoder
to generate document vectors.

Conv-KNRM [14]. It is devised based on KNRM to model n-gram soft matches with an additional convolutional
layer. This model boosts the matching accuracy by learning contextual information of surrounding words.

BERT [36]. It concatenates query-document sequence and feeds it into the pre-trained BERT model. We take
the representation of the ł[CLS]ž token from the last layer as the matching features.
SLTB [4]. It uses learning to rank algorithms to integrate click features, topical features, time features, and

position features into the personalized task.
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HRNN [19]. It uses hierarchical RNN and query-aware attention to exploit sequential information and generates
a dynamic user proile based on the current query. This work highlights the more important sessions according
to the present information need.
PEPS [59]. This work solves the problem of personalized search without building a user interest proile. It

enhances personal word embeddings from the global word embeddings by taking her individual search history
as the training data.

HTPS [65]. This model focuses on clarifying the user’s information need by disambiguating the current query.
It uses hierarchical transformers to encode history with context-aware representation learning to complete this
idea.

PSSL [66]. This work aims at reducing the dependency of suicient data in many personalized works through
data representation enhancement. It applies a self-supervised learning framework with the technology of con-
trastive sampling. Note that it also utilizes document body contents to cover more details.

DIMPS. (Dynamic InterestModeling for Personalized Search) Our proposed model with a detailed description
in Section 3.

DIMPS w/o. c: As the baseline models do not model candidate documents in their personalization models, for a
fair comparison, we exclude the candidate documents’ participation in interest proiling. In this way, the beneits
of DIMPS w/o. c only come from its personalization model rather than its more complex relevance modeling.
Speciically, we discard the input of the candidate document at the user-level transformer and summarize the
outputs of the history sequence �� as the learned user proile. Then we compute the cosine similarity between
the user proile and the candidate document representation as the personalized ranking score. Note that the
current query is still sent to the dynamic interest modeling transformer. As the łw/o. cž model is designed to
explore the efects of the candidate document in interest modeling, we reserve the inluence of the current query.

A summary of the baseline models is shown in Table 3. Descriptions of their document representing approaches
are also attached. Most works simply map documents through a word embedding matrix before sending them
for user interest proiling. Besides, a large percentage of works, except for SLTB and PSSL, solely use titles to
represent documents. We assume that it is the large content and cluttered information that impedes the further
exploitation of documents. In this paper, we address this problem by dynamically extracting corresponding
intents and current intents from the documents.

4.3 Model Setings and Evaluation Metrics

To achieve a balance between efectiveness and eiciency, we performed multiple experiments and set the inal
parameters as follows: The search history includes 10 search behaviors. The passage length is 31. The irst 15
passages of each clicked document list are sent to the document pruning parts. The number of top-selected
passages fed into each intent-oriented document encoding part is 3. The dimension of document and query
vectors is 384. The transformer encoder is one layer with a hidden size 150. The number of heads in multi-head
self-attention is 2. We train the model for 2 epochs to get a satisfactory result. The learning rate is 1e-4 for the
irst epoch and 1e-5 for the second epoch. To compare the performance of all baselines and DIMPS, we use Mean
Average Precision (MAP), Mean Reciprocal Rank (MRR), Precision@1 (P@1) to evaluate the ranking results.
Besides, to alleviate the position bias problem, we calculate the percentage of improved pairs (P-improve) on
inverse document pairs following previous works [19, 31].

• MAP: The value describes the percentage of correctly predicted candidate documents, measured between
0 and 1. Higher values indicate more accurate results.

• MRR: The value measures the positions of the correct answers in the ranking list. Larger values indicate
better ranking quality.
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Table 4. Overall performance of all models. ‘2’ indicates the model outperforms all baselines significantly with paired t-test
at p < 0.05 level. Best results are shown in bold.

Type Model MAP MRR P@1 P-improve

Adhoc Search Ori. .7399 .7506 .6162 -
KNRM .4916 .5001 .2849 .0655
Conv-KNRM .5872 .5977 .4188 .1442
BERT .6232 .6326 .4475 .1778

Personalized SLTB .7921 .7998 .6901 .1177
HRNN .8065 .8191 .7127 .2404
PEPS .8221 .8321 .7251 .2545
HTPS .8224 .8324 .7286 .2552
PSSL .8301 .8398 .7338 .2688

Our DIMPS .8421† .8512† .7532† .2939†
DIMPS w/o. c .8370 .8467 .7461 .2647

• P@1: The value measures the precision of the top 1 item in the ranking list. The higher the value, the
better the ranking.

• P-improve: It is designed under the observation that the user tends to click documents higher in the list,
which may leave relevant but low-ranked documents not examined. We measure the actual improvements
on inverse document pairs [23] to alleviate such positive bias. Higher values represent larger improvements.

5 RESULTS

We evaluate the overall performances of all baselines and our DIMPS model on the B dataset. The results are
reported in Table 4. We can observe that:
(1) Our proposed dynamic interest modeling model DIMPS outperforms all the baseline models,

including ad-hoc models and personalized models, with paired t-test at p<0.05 level on the B dataset.

Especially for state-of-the-art model PSSL, we gain signiicant improvements in terms of all metrics. Our model
improves the results by 1.11% in MAP and 1.14% in MRR. Besides, it outperforms PSSL by 2.51% in the more
objective metric P-improve. These results prove that building dynamic intent-oriented behaviors is a more
efective way for personalized search.

(2) The łDIMPS w/o. cž also reduces the accuracy. We believe it veriies our assumption that learning current
intents from candidate documents beneits re-ranking. Further, preventing the candidate documents from drawing
connections to historical intent representations may lead to great information loss. However, it still outperforms
the state-of-the-art method, proving the adorable ability of our dynamic document proiling approach to build
user interest.
(3) Among all the personalized models that adopt the body content of documents, models with dynamic

representation strategy (i.e., ourmethods) bring better performance gains than themodel with static representation
strategy (i.e., PSSL). Although the SOTA model PSSL also leverages the body content, it simply encodes the entire
text as inal document representations, which includes too much noise for the model to extract accurate user
interests. This indicates that without the dynamic adaption to user intents, just incorporating bodies is not that
eicient in improving personalized results.
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(4) In general, all personalized search models outperform ad-hoc search models, which demonstrates the
contribution of user behaviors for relecting the real information need. In addition, it is noted that among all
evaluation metrics, the improvement of P@1 is more signiicant than others. One possible reason is that by
learning from users’ search history, personalized models are more efective in handling re-inding behaviors,
while in terms of other behaviors, their performance is limited due to the lack of relevant logs. Unlike most
personalized search models which adopt static behavior representations to proile user interests, we focus on
building dynamic interests by exploring the potential in user behaviors of providing information about both
current and future interests.

In a word, it is proved that dynamically modeling interests by building historical intent-oriented and

current intent-oriented document representations is helpful for understanding user preferences and

re-ranking documents. To further analyze the functions of the main components in our model, we will conduct
an ablation analysis and show a visualized example.

6 ANALYSIS

In this section, we conduct sets of experiments to deeply investigate the functionality of the major components
in our DIMPS. To be more speciic, we try to understand the following topics:

• The necessity and performance of the three intent-oriented components: document pruning, document
encoding, and interest modeling.

• The efectiveness of the query-aware attention mechanism in the document encoding part for capturing
corresponding intents, and the possibility of employing alternative passage aggregation patterns, like
attending the inter-passage correlations as well.

• The efectiveness of capturing interactions among all the intent representations in the dynamic interest
modeling stage. We wonder if the accuracy will deteriorate when abandoning or indirectly capturing such
interactions.

• The efects of the number of selected passages in the document pruning part.
• The efects of the history length.
• The ability of our intent-oriented method to model interests when the queries are too ambiguous to express
real user intents.

• If there exists a case supporting our assumption that dynamically representing documents according
to historical and current intents will help build accurate user interests, and the DIMPS are capable of
implementing this idea.

• The eiciency-efectiveness performance of the DIMPS.
• The possibility of applying the document pruning module on other personalized models.
• The possibility of applying the candidate document-aware interest modeling on other personalized models.

6.1 Ablation Analysis

Our dynamic interest modeling strategy is based on the intent-oriented document encoder, which includes the
following parts: the historical intent-oriented document encoding and the current intent-oriented document
encoding. To verify the contribution of each part, we conduct several ablation experiments. The results are
illustrated in Table 5.

DIMPS w/o. DP. We delete the DP (document pruning) part in the document encoder.
DIMPS w/o. HIE. We strip of the HIE (historical intent-oriented document encoding) part in the document

encoder, which results in the discard of the historical intent-oriented document representations in the dynamic
interest modeling module.
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Table 5. Performance of ablation models.

Model MAP MRR P@1 P-improve

DIMPS w/o. DP .8390 .8483 .7481 .2838
DIMPS w/o. HIE .8400 .8496 .7514 .2857
DIMPS w/o. CIE .8403 .8496 .7510 .2830

DIMPS .8421 .8512 .7532 .2939

DIMPS w/o. CIE. We strip of the CIE (current intent-oriented encoding) part in the document encoder, which
results in the discard of the current intent-oriented document representations in the dynamic interest modeling
module. Note that for the candidate documents, we reserve its CIE part to reserve information.
The results of the ablation analysis are presented in Table 5. It is clear to be seen that all ablation models

damage the results of the original DIMPS. When deleting the document pruning part, the model shows the
worst performance. This proves that our passage selection algorithm does provide relatively clear and useful
intent-oriented information for the model to learn. Whereas, DIMPS w/o. DP still outperforms baseline models
with ixed document representations like PSSL, HRNN, and PSGAN with great improvements, which indicates the
efectiveness of our dynamic interest modeling structure. As we prune the documents to make them adapt to the
intents, the model DIMPS further promotes the re-ranking results. This illustrates that documents indeed contain
information related to both the corresponding and future interests, and our document pruning mechanism ofers
a practical way to extract useful features.
As for the document encoding sub-module, without the historical intent-oriented encoding, the MAP, MRR,

P@1, and P-improve metrics drop 0.21%, 0.16%, 0.18%, and 0.82%. This demonstrates the usefulness of extracting
historical intent-related features in building user proiles. Moreover, the performance also loses signiicantly
when the current intent-oriented encoding part is abandoned, with a decline of 0.18%, 0.16%, 0.22%, and 1.09%
in MAP, MRR, P@1, and P-improve. This shows that clicked documents contain many features directly related
to current intents, while explicitly modeling them from the passage level could support the model to better
understand search needs and re-rank documents. It is notable that the current intent-related features, which are
overlooked by previous studies, are proved to be as informational as the historical ones. Moreover, even when
stripping one of the two components in our model, the results still obviously outperform the baseline model
PSSL, demonstrating the efectiveness of our methods for modeling intent-oriented interest.
To sum up, stripping of any main component in the document representation procedure will impede the

learning of user interest. Further, it is observed that extracting current intent clicked documents is as efective as
solely extracting corresponding historical ones, which accords with our assumption: there exists rich information
within clicked documents related to users’ current intent but overlooked by previous studies.

6.2 Efects of theuery-aware Aggregation in the Document Encoder

To explore the function of the query-aware attention mechanism in the document encoder, for passage-level
evidence we test our model with three diferent aggregation patterns:

(1) w/o q: the passage vectors and the title vector are simply summarized without the query-aware attention.
(2) self-attention: the passage vectors and the title vector are fed into a self-attention layer together with the

corresponding query. The output vectors of the passages and the title are summarized to represent the whole
document.
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Table 6. Results with diferent aggregation paterns for passage-level evidence.

Model MAP MRR P@1 P-improve

w/o. q .8411 .8502 .7515 .2877
self-attention .8425 .8516 .7544 .2920

self-attention w/o. q .8407 .8502 .7520 .2883

DIMPS .8421 .8512 .7532 .2939

Table 7. Results of diferent sequence-level interest modeling strategies

Model MAP MRR P@1 P-improve

independent HC .8358 .8449 .7426 .2895
compared .8372 .8475 .7482 .2572

DIMPS .8421 .8512 .7532 .2939

(3) self-attention w/o. q: the passage vectors and the title vector are fed into a self-attention without the
corresponding query. The output vectors of the passages and the title are summarized to represent the whole
document. The results are reported in Table 6.

As expected, models with query-aware attention obtain better accuracy, which shows the efectiveness of using
corresponding queries to extract intent-related features in documents. The self-attention model achieves the
best results. We believe this proves the interactions among passages are useful clues for the model to understand
search interests and the corresponding query still provides critical information for the organization of such clues.
To balance eiciency and efectiveness, we abandon the relatively expensive self-attention models in our DIMPS.

6.3 Efects of the Dynamic Interest Modeling

After the intent-oriented document representation, we have extracted historical and current intents from the
history, the current query, and the candidate document. Next, we model user interests by attending to the
dependencies among those intent representations. The reason for directly attending dependencies among the
history, the current query, and the candidate document lies in two aspects:

• The contribution of diferent historical representations for interest proiling can be addressed with the
help of the current representations (i.e., the current query and its potential clicked documents: candidate
documents).

• The candidate documents may include complementary information for current intents which are useful for
interest proiling.

In this section, we are going to explore the functionality of the aforementioned dependency modeling strategy.
To be speciic, we set three model variations as follows:

(1) independent HC: The relatedness of the current behavior to each historical behavior is not modeled. We
discard the inputs of the candidate document as well as the current query, which represents current intents, at
the user-level transformer. Instead, we take the summarized outputs of the history sequence �� as the uniied
historical interest. For the current intents, we concatenate the candidate document and the current query and
send them to another transformer. The outputs are summarized as the current interest. Further, we append it
and a ł[CLS]ž token to the uniied historical interest and send them to a transformer. The output of the ł[CLS]ž
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Fig. 5. Results with diferent numbers of selected passages.

token is taken as the predicted user proile. In the re-ranking stage, this predicted user proile is taken as the user
proile I in Equation 8.

(2) compared: This experiment is designed to investigate how the impact of negative samples deteriorates the
ranking quality, and the efectiveness of using the predict token. The dependency modeling strategy is the same
with DIMPS, but without the notation of łpredicted interest vectorž. We discard the input of the ł[CLS]ž token at
the sequence-level transformer. Instead, we summarize the outputs of history sequences �� (history-intent) as
the user proile, and then compare its cosine similarity regarded the outputs of the candidate document for the
personalized score.
The experimental results shown in Table 7 match our expectations. All three models damage the ranking

quality of DIMPS. The łindependent HCž gains the lowest accuracy, demonstrating that the model fails to
take advantage of the intent-oriented information from the history without the attention to current behaviors.
Whereas, with the communications among historical and current intents ensured, the łcomparedž model still
sufers from considerable drops on all metrics. The major reason lies in the uncertainty of the candidate documents’
satisfactoriness. If an unsatisied candidate document is fed to the network, its representations will be inclined to
1) the correct current intent because of the intent-oriented document encoder, 2) and historical intents because
the dynamic interest modeling poses the impact of the history to it. Therefore, as we would like to use candidate
documents as complementary intent representations, unlike most user proile-based personalized methods, we
set a ł[CLS]ž token to relect how the predicted search sequence accords with user interests.

6.4 Experiments with Diferent Numbers of Selected Passages

To analyze our model’s performance regarding the number of selected passages in the document pruning module,
we set the top size � at 2, 3, 4, and 5 respectively. From Figure 5, we observe that, in general, more selected
passages help the model to capture user intents. However, the accuracy deteriorates when setting the � larger
than 3, indicating the inclusion of more noise when learning from long documents. Moreover, it also veriies the
necessity of pruning documents according to corresponding intents as well as the functionality of our pruning
strategy to extract such intents. As the balance of eiciency and efectiveness, we take the � for 3 in our DIMPS
model.

6.5 Experiments with Diferent Numbers of Historical Behaviors

To investigate the impact of history length in DIMPS, we test the model with diferent numbers of historical
search behaviors. The results plotted in Figure 6 show that when the behavior numbers are lower than 10, the
accuracy grows as lengthening the history. However with a long history, when increasing the behavior number
the accuracy tends to drop more signiicantly. Speciically, the MAP gap between behavior numbers 10 and 15 is
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Fig. 7. Results on ambiguous and non-amibiguous queries

1.45%, while the MAP gap between behavior numbers 15 and 20 is 2.28%. We suppose this is because, in the long
history, the text related to current intents in the clicked documents is more sparse, which results in much noise in
the selected current intent-oriented passages. For a longer history, the intent-oriented document encoder should
be further adjusted to ensure efective information extraction. In future work, we may exclusively design the
intent-oriented document encoder for long-term history, with less expensive structures compared to the current
short-term ones.

In addition, our lowest accuracy still outperforms the SOTA method PSSL, which requires 50 historical searches.
This phenomenon also proves that our DIMPS does not require a long user history to achieve adorable personalized
results.

6.6 Experiments with Ambiguous and Non-ambiguousueries

We irst divide the dataset into ambiguous and non-ambiguous queries, the intents of the former are more
ambiguous with words that could be interpreted into diverse meanings like łMACž while the latter are more clear.
Click entropy [17] is an efective measurement for the queries’ ambiguity. Previous studies [17, 44] have shown
that a larger click entropy often indicates more potential for search results personalization because of the larger
ambiguity. We categorize the queries with the cutof of click entropy at 1.0. Figure 7 shows the performance
improvement in MAP over BM25 by the state-of-the-art model PSSL, our proposed dynamic interest modeling
model DIMPS, and the two ablation models.
It is noted that all personalized models boost the original ranking on both groups. Generally, the ambiguous

queries (click entropy≥1) have higher improvements than non-ambiguous queries (click entropy<1). The results
demonstrate the efectiveness of all methods for clarifying search intent. Besides, all the dynamic interest modeling
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Fig. 8. The weights of a part of past search history applied by the current query łtenderness of the abductorž. A lighter
area indicates a larger weight. q� represents the �th query vector in the user’ search history. D� refers to the historical

intent-oriented document representation corresponding to the �th search. While D̃� is the current intent-oriented document

representation of the �th search. P̃�, � is the �th passage-level intent-oriented representation from the current intent-oriented
encoding part of the �th search. Corresponding keywords are shown in the sub-figure.

methods consistently outperform PSSL on both query categories. Speciically, our DIMPS outperforms the baseline
model PSSL by 1.00% when click entropy<1 and 2.44% when click entropy≥1. Likewise, a greater drop can be seen
when click entropy≥1 between DIMPS w/o. DP and PSSL. Similar performance gap is observed between the other
two ablation models and the PSSL. This demonstrates the contribution of the proposed intent-oriented dynamic
interest modeling strategy in disambiguating queries. Particularly, if we strip of the current intent-oriented
encoding parts, the performance drops more noticeably on ambiguous queries than on non-ambiguous queries.
This conirms that the clicked document contains informational clues for the deduction of users’ current intent,
which accords with our assumption. A similar phenomenon can be seen on DIMPS w/o. DP. We believe this shows
the necessity of dynamically extracting supplemental pieces in the clicked history, especially under ambiguous
queries.

Next, to verify the function of our intent-oriented document encoder and interest modeling module in detail,
we will show a visualized example.
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6.7 Case Study

Aswe stated before, static document representations are noisy and broad which hinders us from capturing accurate
user intents and re-ranking documents. In this paper, we implement a dynamic intent-oriented document encoder
and a dynamic interest modeling module to construct intent-aware interest sequences. Table 4 demonstrates
the efectiveness of this kind of dynamic interest modeling in improving personalization. To further analyze
how the representing and modeling work, we show an example by sampling one user’s query log in the B
dataset. We visualize the attention weights applied to all behavior representations by the current query in the
inal history-level transformer. Furthermore, we also represent the attention weights applied to passage-level
representations by the current query in the document encoding part.

In this case, the user enters łtenderness of the abductorž to get information about a muscle problem. As shown
in Figure 8, all three vectors from each behavior are assigned diferent weights by the issued query. We focus on
the representations of search position 4 with the query word łhand musclež, which does not reveal direct relations
with the current query. However, the clicked document includes much information about muscle problems, which
means this is a behavior highly related to the current intent.

From Figure 8, we can observe that:

• The the postion 4’s query representation q4 obtains a small weight, which accords with intuitions. This
veriies that without dynamic document proiling, like previous methods the model cannot capture the
interests underlying document documents.

• Both the postion 4’ historical intent-oriented representation D4 and the current intent-oriented representa-

tion D̃� gain larger weights compared to its query representation. This indicates that our model successfully
leverages the additional features from the intent-oriented document encoder, and correctly considers them
contributing to depicting user interests.

Now we have proved that in dynamic interest modeling, the model successfully emphasizes the informational
parts that beneit the user proiling. To further analyze how the relevance of the current intent is attended in the
current intent-oriented encoding, in Figure 8, we also show the attention weights at position 4 among the three
selected passage representations and the title representation. It is noted that:

• The second passage �̃3,2 that includes a detailed description of muscle problems related to abductor
tenderness are applied the largest weights, which veriies our current intent-oriented encoding attends
important information about current search intent from historical data.

It is obvious that either the document representation itself (consists of several passage representations), or its
importance for interest modeling, is dynamically decided by the current query. From the weights of this case, we
can see that such ine-grained modeling of a document depends on its contribution to user proiling. That means,
our model is efective at ine-grained modeling of documents in personalization, leading to its adorable ability to
improve personalized ranking quality.

In conclusion, the visualization of weights on passage-level intent-oriented representations demonstrates that
our intent-oriented encoding module can extract features related to the current intent from the history data, while
the weights of all behavior representations verify that our interest modeling module is capable of highlighting
relatively important parts when building the search interest.

6.8 Eficiency-Efectiveness Analysis

To extract features related to the current intents, we proile each historical clicked document set according
to the current query. This means we need to run the pruning part and the encoding part on each historical
interaction. None of the computations about the current intent are reusable because each new query requires
full recomputation. Hence, we pay great attention to reducing the computational cost. For example, the whole
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Table 8. A Computational Complexity Summary of the Baseline Personalized Models Discussed in the Article

Model Computational Complexity Description

HRNN � (��2 + ��) � (��2) is the complexity from its recur-
rent networks, and � (��) is from its
query-aware dynamic attention.

PEPS � (�2� + ��2) The multi-head attention contextual rep-
resentation has the complexity of� (�2�).
� (��2) is from the GRU-based query re-
formulation module.

HTPS � (��2� + � 2�) � (��2�) is from its word-level trans-
former. � (� 2�) is from its transformer
encoder on history.

PSSL � (� 2�) It is from its transformer encoders on user
history.

DIMPS � (��� + � 2�) � (���) is the complexity of the query-
aware document encoding.� (� 2�) is the
complexity of the interest modeling.

DIMPS self-attention � (��2� + � 2�) � (��2�) is the complexity of the self-
attention document encoding. � (� 2�) is
the complexity of the interest modeling.

procedure of document pruning and passage encoding is performed oline, without the need to learn with current
queries. The fast TF-IDF is used to extract query-related passages. The selected passages are also previously
prepared by pre-trained deep learning models. During the learning procedure, we discard the modeling of
inter-passage interactions but utilize simple query-aware attention to build document proiles. What’s more, the
model also shows its superiority over baselines even fed with a small number of historical behaviors.

All the above eforts lead to satisfactory results over eiciency as well as efectiveness. In this section, we irst
analyze the computation complexity in theory for all personalized baselines and the proposed model. Second,
we compare the query latency of the DIMPS łself-attentionž model, DIMPS without passage encoding, and the
DIMPS original model, to represent the efects on computational cost in the document proiling stage. Third, we
compare the query latency between the state-of-the-art model PSSL and our proposed model under diferent
history lengths.

Overall Complexity Analysis.

We list the computational complexity of all the deep-learning personalized baselines as follows in Table 8.
Note that in real applications is the query latency that afects the user, so we do not analyze the complexity of the
pre-training or oline preprocessing stage of the models. � is the number of search behaviors in the user history.
� is the representation dimension. � is the number of passages in each intent-oriented pruned document. � is
the sequence length of queries or documents.
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Table 9. Eficiency and efectiveness of DIMPS with diferent document encoding strategies.

Model MAP MRR P@1 Queries per sec-
ond

DIMPS self-
attention

.8425 .8516 .7544 92,783

DIMPS Emb .8407 .8502 .7520 154,465

DIMPS .8421 .8512 .7532 101,968

Our DIMPS model has comparable computational complexity with all the baselines. Thanks to the oline
document pruning stage, using document passages instead of titles does not bring unacceptable expenses.

Eiciency-Efectiveness Analysis for DIMPS

In this section, we exploit the eiciency and efectiveness of our DIMPS model with diferent document
encoding strategies. Speciically, we test the following two model variants:

• self-attention. It is the model mentioned in Section 6.2. The query-aware attention in the document
encoder is replaced by self-attention models. This model has shown a better ability to capture relevance
among passages and gains better ranking results in Table 6. In this section, we will further analyze its
eiciency.

• Emb. The transformer-based encoding part described at the beginning of Section 3.1.2 is abandoned. While,
we generate passages and query vectors by mapping each word through a pre-trained embedding table,
which is ine-tuned during the training, and summarize all the word representations. The embedding matrix
is obtained by training a word2vec [33] model following [19, 31, 65]. The embedding size is 100. We set
this experiment to explore our model’s performance when the oline transformer encoding part is too
expensive to employ in real applications.

We provide the costs of two models in Table 9. All the experiments are conducted on a 256 GB memory server
with a single Titan V GPU.

As for the self-attention model, it is shown that the accuracy improvement is not signiicant but the cost
grows more obviously. Besides, we also give theoretical analysis on eiciency in Table 8. It is shown that the
computational cost of self-attention models, with the complexity of � (��2�), gains considerable increase with
more input passages. On the contrary, the DIMPS model with query-aware attention, with the complexity of
� (���), would be far less expensive. We did not test the model with a history longer than 20 or passage numbers
larger than 3 because the document pruning part would cost much as these numbers grow. But as the document
pruning can be performed oline, it is possible that in real-life applications these numbers would be much larger.
At last, we adopt the eicient dynamic query-aware mechanism into DIMPS to ensure our model structure is not
too complex to apply in real-life applications, where longer inputs could be preferred.

As for the Emb model, it yields better results on efectiveness and eiciency over PSSL in the next section. This
proves that our model’s superiority is not heavily dependent on the pre-trained passage encoding part. Even if
generate passage vectors during training, the computational cost and accuracy are still adorable.

Moreover, the tf-idf document pruning part can be deleted to save cost since the DIMPS w/o. DP in Section 6.1
still achieves competitive performance over PSSL.

The Comparison between DIMPS and PSSL.

The comparison of query latency between our method and the state-of-the-art model PSSL is shown in Figure 9,
where we test the two models under diferent history lengths. Historical behavior numbers are denoted in Figure 9.
All the experiments are conducted on a 256 GB memory server with a single Titan V GPU. To ensure a fair
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Fig. 9. Efectiveness and eficiency of our proposed model and PSSL with diferent history lengths. Compared to the SOTA
model PSSL, our DIMPS model gains beter accuracy and costs comparable computational resource.

comparison, the PSSL model is implemented by its authors’ published code. The dataset used in this section is
also the same as the one used in the PSSL paper.
We can see that our method has comparable query latency with PSSL, while signiicantly outperforming

it in terms of ranking quality. As expected, modeling interest from more historical behaviors increases the
computational cost. The increases of DIMPS are larger than PSSL, it is because the DIMPS needs to perform
document proiling for each behavior, while PSSL only needs to add the behavior to the history-level transformer
encoder. Whereas, all of the DIMPS models show obvious advantages in performance over the PSSL models.
In this igure, the best eiciency-efectiveness balance is achieved with a history of length 10, which indicates
our intent-oriented extraction strategy is more suitable for short-term history. We believe this is because a
longer history tends to relect more long-standing user characteristics, while its ine-grained evidence is not so
informational for user proiling.

In summary, compared to PSSL, our model shows better efectiveness and comparable eiciency.

6.9 Applications of the Document Pruning

In this paper, we design a document pruning approach to prune document contents according to the queries. In
this way, we can leverage passage-level information to capture more acceptable user interests. As the results
shown in Table 6, the model without query-aware attention still outperforms previous methods. This implies the
document pruning module efectively extracts useful features, while simply using the titles or the entire text of
the documents indeed brings much noise. Naturally, we wonder if the performance of other personalized methods
will be improved with the utilization of the query-aware document pruning module. Hence, in this section, we
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Table 10. Results of Baselines with Document Pruning

Model MAP MRR P@1 P-improve

HTPS w/o. DP .8207 .8304 .7219 .2773
HTPS DP .8226 .8331 .7268 .2759
PSSL w/o. DP .8299 .8295 .7329 .2709
PSSL DP .8301 .8398 .7338 .2740

Table 11. Results of Baselines with Candidate Document-aware Interest Modeling

Model MAP MRR P@1 P-improve

HTPS .8224 .8324 .7286 .2552
HTPS ca .8236 .8340 .7288 .2758
PSSL .8301 .8398 .7338 .2688
PSSL ca .8280 .8379 .7315 .2715

apply the document pruning for two baselines, HTPS and PEPS. We choose the two models for experiments
because they characteristically follow the popular user proiling paradigm shown in Figure 1(a): building a user
proile from the sequence of past queries and clicked documents.
To be speciic, we prune the clicked documents according to their corresponding historical queries. The

experiments are noted as łDPž in the table. We do not prune the document according to the current interest,
because the current intent-oriented features need to be specially modeled, which is not included in the baseline
models. The pruned passages are encoded to vectors as in Section 3.1.1. Then, the vectors are appended to the
original title word embeddings of the documents. That is, they are treated as additional words from the documents
in the baseline models.
For comparison, we also experiment with the baselines with the irst passages of the documents. The experi-

ments are noted as łw/o. DPž in the table.
The number of passages is set as 3. The length of history is 20. Note that the history lengths is not the same as

the ones in the original papers. Because PSSL does not measure the length by the number of clicked behaviors, it
just sends a certain number of queries and all the clicked documents. While, the HTPS uses 50 past behaviors as
user history, which is quite time-consuming for our document-pruning strategy. The models in this section are
implemented according to the code published by their authors.

The experiments shown in 10 illustrate that both the łDPž models outperforms łw/o. DPžmodels. Speciically,
for HTPS the document pruning improves the accuracy by 0.19% on MAP, while for PSSL, it improves 0.02%
on MAP. This veriies that our model-free document pruning algorithm could help the models to build a more
accurate user proile by the query-aware pruned passages.

6.10 Applications of the Candidate Document-aware Interest Modeling

In our DIMPS, we send the candidate document into the interest modeling procedure to capture the interactions
between the candidate document and user behaviors. The inferiority of łindependent HCž in Table 7 and łDIMPS
w/o. cž in Table 4 compared to DIMPS indicates the efectiveness of such candidate document-aware interest
modeling strategy. Similarly, we would like to investigate the functionality of this strategy on other personalized
methods. Like in Section 6.9, we choose the two typical user proiling baselines HTPS and PSSL for experiments.
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In implementation, we append the candidate document representation, used in their original models, to the
last of the history sequence. The rest of the interest modeling procedure remains unchanged. The candidate
document-aware models are denoted as łcaž. Comparison of the tested models and original models is shown in
Table 11. The models in this section are implemented according to the code published by their authors.

It is observed that the candidate document-aware strategy improves the performance of HTPS, but deteriorates
the performance of PSSL. The deterioration may come from the neglect of the relationship between history and
documentation in PSSL’s pre-training stage. Besides, from the łcompared ž model in Section 6.3 we can see the
ways of getting ranking scores inluence the performance of candidate document-aware modeling. To conclude,
we believe that incorporating candidate documents by appending them to the history sequence could lead to
improvements for some methods, but it needs more special consideration for some sophisticated scenarios. The
dependency between history and candidate documents should be further studied to design a more functional
candidate document-aware interest modeling strategy. We would leave this to our future work.

7 CONCLUSION

In this paper, we address the personalized search problem by building intent-aware dynamic document represen-
tation to construct more accurate user proiles. To implement this idea, we propose a dynamic interest modeling
strategy from passage-level evidence. First, we explicitly model features related to corresponding and current
intents from documents. Furthermore, we organize documents and their corresponding queries into a sequence
and build a dynamic user proile. Finally, we evaluate the learned proile to re-rank the candidate documents.
Experiments on the large-scale dataset illustrate our model’s superiority over the state-of-the-art methods.

Besides, we perform ablation experiments on the two main components in our dynamic intent-oriented document
encoder. Results demonstrate ourmodel’s ability to capture search intents from history. The analysis of our passage
encoding and sequence modeling is also presented with experimental results. It is conirmed that using queries
to guide the extraction of corresponding intents from passage-level evidence is an efective way for document
representation, while capturing the full interactions among history, current query, and candidate documents is
necessary for better re-ranking. Then we test our model’s performance on ambiguous and non-ambiguous queries
respectively, to test its capacity to build intents even with inaccurate search words. Furthermore, by presenting the
visualization of weights, we also verify our model’s efectiveness in modeling dynamic intent-aware documents
as well as the whole search sequences to depict a better user proile. We also conduct eiciency-efectiveness
analysis between the state-of-the-art model and our model with varying history lengths as well as one another
passage encoding strategy. Results have proved the possibility of deploying DIMPS into real-world applications.
Besides, we test the functionality of the document pruning module on several baselines. The improvements verify
that our document pruning can ofer eicient document vectors for other personalized approaches, alleviating
the noise problem caused by using the entire text of the documents.
In future work, we are interested in designing an exclusive intent-orient interest modeling strategy for long-

term history to improve the performance of our model. Second, we want to explore how the ranking quality
changes when substituting some of the components in the oline document pruning and passage encoding stage,
which would be beneicial in inding the tradeof conigurations under diferent search requirements.
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