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Abstract
Retrieval-augmented generation (RAG) enhances large language
models (LLMs) by integrating external knowledge retrieved from a
knowledge base. However, its effectiveness is fundamentally con-
strained by the reliability of both the retriever and the knowledge
base. In real-world scenarios, imperfections in these components
often lead to the retrieval of noisy, irrelevant, or misleading coun-
terfactual information, ultimately undermining the trustworthiness
of RAG systems.

To address this challenge, we propose Robust Fine-Tuning (RbFT),
a method designed to enhance the resilience of LLMs against re-
trieval defects through two targeted fine-tuning tasks. Experimental
results demonstrate that RbFT significantly improves the robust-
ness of RAG systems across diverse retrieval conditions, surpassing
existing methods while maintaining high inference efficiency and
compatibility with other robustness techniques.

CCS Concepts
• Information systems→ Information retrieval; • Computing
methodologies→ Natural language generation.

Keywords
Retrieval-augmented Generation, Fine-tuning, Robust

1 Introduction
Large Language Models (LLMs) have achieved exceptional perfor-
mance across diverse natural language processing tasks [29, 50],
yet they remain constrained by challenges such as hallucinations,
outdated or incomplete knowledge, and limited adaptability to spe-
cialized domains [19, 24]. Retrieval-augmented generation (RAG)
has emerged as a key technique to address these limitations by
integrating LLMs with external knowledge sources, enabling en-
hanced factual accuracy, up-to-date information access, and im-
proved domain-specific performance [17, 26, 44]. Due to its effec-
tiveness, RAG has been widely adopted to provide LLMs with a
flexible mechanism for knowledge augmentation, enhancing their
performance in varying scenarios [5, 14].

Despite their popularity, existing RAG systems suffer from a
critical challenge: the performance of RAG systems heavily relies on
the quality of the information provided by the retriever [25, 45, 54].
Since the real-world retriever and its corresponding knowledge base

could be defective and imperfect [7, 36], the retrieved documents
provided to the LLM may contain inaccurate, irrelevant, or even
malicious and misleading information [4, 48]. Such low-quality or
harmful information may hinder the LLM from accessing accurate
knowledge, leading to inaccurate or misleading responses [53, 54,
59], significantly degrading the performance and reliability of RAG
systems (as discussed in §3.2). Therefore, an imperative challenge
arises: how to enhance the robustness of LLMs and RAG systems
against retrieval defects, ensuring their ability to generate accurate
responses even with defective retrieval results?

Although there are several studies working on the robustness of
RAG systems against retrieval defects through designing sophisti-
cated inference mechanisms [48, 51–54], they are limited in several
perspectives. First, a critical issue is the significant increase in in-
ference costs, which severely limits the RAG pipeline’s runtime
efficiency. This issue arises because existing studies mostly require
generating intermediate results, which the LLM must aggregate
or evaluate to produce the final response. Second, more impor-
tantly, these methods tend to fail under severe retrieval defects
or other challenging conditions since they do not fundamentally
address the LLM’s dependency on input knowledge. For instance,
RobustRAG [53] follows an "isolate-then-aggregate" pipeline, where
answers are independently generated for each retrieved document
and then aggregated. This approach not only incurs high inference
costs but also becomes ineffective when the proportion of negative
documents is high. CRAG [54], on the other hand, leverages the
large-scale web search to supplement and rely on the vanilla LLM
to integrate and refine knowledge from different sources. How-
ever, when the vanilla LLM fails to identify the defects in retrieved
results, the whole pipeline would be broken and ineffective.

Based on the identified shortcomings of the aforementioned ap-
proaches, we believe that building an efficient and robust RAG
system requires us to improve the inherent defensive capabilities of
LLMs to fundamentally reduce their over-reliance on and blind trust
in input information. Specifically, a well-defended LLM should have
two characteristics: (1) Defects Detection: it should be capable
of distinguishing what kind of information facilitates an effective
response to the user’s query and which documents are irrelevant or
even harmful; (2) Utility Extraction: it should effectively utilize
the limited useful information provided by the retriever while ig-
noring irrelevant or harmful content, even under adverse retrieval
defects. Therefore, we propose two corresponding fine-tuning tasks
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aimed at strengthening the LLM’s overall defensive capabilities:
Defects Detection and Utility Extraction, collectively referred to as
Robust Fine-Tuning (RbFT). Specifically, we replace the original
retrieved documents with defective ones and then train the LLM
to (1) determine whether each document contains defects, thereby
enhancing its ability to assess inputs critically; (2) generate the
correct answers based on the defective inputs, improving its capa-
bility to utilize useful information effectively. Experimental results
demonstrate that our fine-tuning tasks can deliver superior perfor-
mance in extremely challenging retrieval conditions, significantly
outperforming the state-of-the-art baseline methods.

In summary, this paper makes three key contributions: (1) We
conduct a comprehensive analysis of potential retrieval defects in
RAG systems from the perspectives of the retrieval system (i.e., the
retriever and the corpus) and find that LLMs are highly vulnerable to
retrieval defects. (2) We propose RbFT, a set of fine-tuning tasks that
improve LLMs’ ability to evaluate and utilize retrieved information,
enhancing robustness against retrieval defects. (3) We conduct
extensive experiments to show that RbFT can achieve superior
performance under challenging retrieval conditions, significantly
outperforming existing state-of-the-art methods.

2 Related Work
2.1 Retrieval-Augmented Generation
In recent years, Retrieval-Augmented Generation (RAG) has gar-
nered widespread attention in the field of natural language process-
ing (NLP) and shown significant advantages in knowledge-intensive
tasks [2, 9, 14, 18, 20, 24, 39, 46, 47]. Traditional RAG typically fol-
lows the "Retrieval-then-Read" framework [2, 14, 19, 24], where
an external retriever [28, 34, 37, 38, 57] or a complex retrieval sys-
tem [35, 40] is adopted to search for relevant documents from a
large-scale external corpus based on the user’s query. The retrieved
documents provide external knowledge that supplements the query,
allowing the generative model to incorporate relevant information
beyond its parametric knowledge when generating a response. To
further enhance the retrieval effectiveness, researchers have intro-
duced additional techniques such as query rewriting [8, 27] and
re-ranking [1, 13] to refine the quality of retrieved documents before
appending them to the generative model.

Building upon the traditional RAG framework, various exten-
sions have been proposed to enhance its effectiveness and efficiency.
One such extension, Parametric RAG [43], directly injects the re-
trieved documents into LLM parameters by offline parameterizing
each document into independent plug-in parameters. During the
inference process, the retrieved document’s parametric representa-
tion is merged and integrated into the LLM, enabling knowledge
injection without extending the input context. From another angle,
GraphRAG [12, 16, 32] leverages pre-constructed knowledge graphs
to retrieve graph elements with relational knowledge relevant to a
given query. This approach has shown improved performance, es-
pecially in tasks that rely on structured and relational information.
Another research direction, dynamic RAG [20, 41, 42], dynamically
triggers the retrieval module during the generation process when
the LLM exhibits high uncertainty during the generation process.

In contrast to existing works that focus on improving retrieval
quality, refining retrieval pipelines (e.g., through query rewriting or

re-ranking), or reorganizing knowledge representation, we propose
a fundamentally different perspective: directly enabling the LLM
itself to handle imperfect or even malicious retrieval results. Instead
of assuming perfectly relevant or pre-filtered documents, we train
the model to detect flaws in retrieved texts and extract only useful
evidence, mitigating the impact of noisy, irrelevant, or incomplete
information. This shift not only enhances accuracy but also fosters
a more resilient and trustworthy RAG framework.

2.2 Robustness in RAG
The robustness of RAG systems refers to the ability of LLMs to con-
sistently extract and apply relevant knowledge, even when exposed
to varying or defective retrieval inputs [60]. Existing works have
found that misinformation and corruption retrieval inputs pose sig-
nificant challenges to the robustness of RAG systems. Adversarial
Addition and Modification [10] demonstrates the vulnerability of
automated fact-checking systems when confronted with synthetic
adversarial evidence. Pan et al. [30] and Pan et al. [31] explore the
threat posed by misinformation (whether manually crafted or gen-
erated by LLMs) to open-domain question-answering (ODQA) sys-
tems, highlighting the vulnerability of these systems when exposed
to misinformation corruption. By injecting malicious texts into the
knowledge base, PoisonedRAG [61], GARAG [6] and Phantom [3]
can manipulate LLMs into generating specific incorrect or harm-
ful responses. To address these vulnerabilities, researchers have
proposed strategies focusing on input optimization and knowledge
integration. Weller et al. [52] conducts query augmentation and
introduces a novel confidence method based on answer redundancy.
RobustRAG [53] employs an isolate-then-aggregate strategy to en-
sure the robustness of LLM responses against retrieval corruption
attacks. By generating self-synthesized rationales, InstructRAG [51]
explicitly denoises the retrieved content, thereby enhancing the
robustness of RAG systems. CRAG [54] and AstuteRAG [48] turn
to refine and integrate knowledge derived from different sources to
improve knowledge utilization and enhance the robustness of the
generated answer. However, despite the progress achieved by these
methods, as discussed in §1, they can only partially control the
retrieved content that the LLM accesses in RAG systems and fail to
address the core issue of LLMs’ excessive reliance on the retrieval
inputs. Unlike these works, we focus on enhancing the inherent
defensive capabilities of LLMs to mitigate the impact of retrieval de-
fects. By reducing dependency on external retrieval, our approach
fundamentally improves RAG system robustness, offering a more
resilient and trustworthy framework for real-world applications.

3 Task Formulation
In this section, we first formalize the workflow of the RAG system
and then discuss three types of potential retrieval defects that may
occur in the RAG process.

3.1 Workflow of RAG
Following previous works [24, 54], a vanilla RAG system typically
consists of a retrieval component R, a generation component (i.e.,
the LLM) G, and a corresponding corpus C = {𝑑} containing a
large collection of knowledge documents. Whenever the system
receives a user query 𝑞, the retrieval component R first retrieves
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Figure 1: Overview of our RbFT. Specifically, RbFT consists of two sub-tasks: Defects Detection and Utility Extraction, which
aim to identify the types of retrieval defects and generate the final answer with limited useful information, respectively. In the
figure, green text indicates relevant information, while red text represents incorrect counterfactual information.

the top-𝑘 most relevant documents D𝑞 = {𝑑𝑞1 , 𝑑
𝑞

2 , ..., 𝑑
𝑞

𝑘
} ⊂ C from

the corpus C:
D𝑞 = R(𝑞, C) (1)

Then, the LLM G generates a response 𝑟 based on the query 𝑞 and
relevant documentsD𝑞 , where the expected output 𝑟 should ideally
match the ground-truth answer 𝑎. Thus, the entire workflow can
be formalized as:

𝑟 = G(𝑞, D𝑞) = G(𝑞, R(𝑞, C)) (2)

It is evident that, aside from the understanding and generation
capabilities of the LLM itself, the quality of the generated response
𝑟 is highly dependent on the capability of the retriever R along with
the quality of the corpus C. Either an underperforming retriever
or a low-quality corpus can significantly degrade the response
quality. Since these retrieval-side issues are unavoidable in real-
world scenarios, our work focuses on enhancing the capability of
the generation component G to minimize their negative impact.

3.2 Retrieval Defects
As mentioned above, due to the limitations of the retriever’s perfor-
mance and the quality of the corpus, the retrieval component often
cannot guarantee that all returned documents fully meet the user
query’s information needs, resulting in various types of retrieval
defects. These defects can be broadly categorized into three types:

3.2.1 Noisy Documents. Noisy documents refer to content that is
relevant to the query topic but does not directly answer the query.
For example, given the query in Figure 1: "Which album features

the song ’Time’ by Pink Floyd?", the retrieval system might return
a general overview of the band Pink Floyd (Doc 2 in Figure 1).
Although such a document is related to the band and its music, it
does not explicitly mention the album containing the song "Time",
thereby failing to address the core question.

3.2.2 Irrelevant Documents. Irrelevant documents are those that
bear no connection to the query topic. Such documents are typically
retrieved due to inaccuracies in the retrieval model’s judgment. For
instance, in response to the same query, the system might retrieve a
document introducing another band likeNirvana (Doc 3 in Figure 1).
While about music, it has no relevance to Pink Floyd or its albums,
making it a clear example of an irrelevant document.

3.2.3 Counterfactual Documents. Counterfactual documents con-
sist of false or misleading information, often resulting from inaccu-
racies or malicious manipulation within online content. They fail
to answer the question and may even lead to misconceptions. For
example, while the correct answer to the query is "The Dark Side of
the Moon", a counterfactual document might falsely claim that the
song "Time" appears on another album "Wish You Were Here" (Doc 4
in Figure 1). Such incorrect information undermines the reliability
of the retrieval process and can mislead both users and LLMs.

To simulate different levels of retrieval defects, we use varying
probabilities 𝜏 to randomly replace the original retrieved documents
with defective documents of different or identical types. Let the
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Figure 2: Emperical study: the impact of different types of
retrieval defects on Vanilla RAG. The average EM metric on
NQ, HQA, and TQA datasets is reported.

modified retrieval result be denoted as D𝑞
𝜏 , our goal is for the LLM

to generate the correct answer 𝑎 even when provided with D𝑞
𝜏 .

To validate the negative impact of these retrieval defects on RAG
systems, we conduct preliminary experiments on three datasets:
Natural Questions [23], HotpotQA [56], and TriviaQA [21], and
report the average results. We select e5-base-v2 [49] as the re-
triever, returning the top-5 retrieved results, while LLama-3.2-3B-
Instruct [11] and Qwen2.5-3B-Instruct [55] are adopted to generate
the final answers, which are measured using the exact match (EM)
metric. The tests are conducted using the aforementioned three
types of retrieval defects and their mixture (i.e., randomly selecting
one type of defective document for replacement). The defect replace-
ment probability 𝜏 is set to {0, 0.2, 0.4, 0.6, 0.8, 1.0}. As observed in
Figure 2, various types of retrieval defects pose a significant threat
to the reliability of the vanilla RAG system. Specifically, misleading
counterfactual documents have the greatest impact on RAG systems,
while even noisy documents that are relatively less harmful can
be quite disruptive. When all input documents are noisy, accuracy
drops to below 40% of the original. Therefore, the severe impact of
retrieval defects on the reliability of RAG systems underscores the
urgent need to enhance their robustness.

4 Robust Fine-Tuning (RbFT)
As mentioned in the §1, since the performance of an RAG system
heavily depends on the quality of the retrieved documents and the
model’s ability to effectively utilize them, we aim to enhance the
robustness of the overall RAG system by fine-tuning the LLM to
strengthen its intrinsic defensive capabilities. Here, the robustness
is reflected not only in the model’s ability to remain stable when
confronted with retrieval defects or low-quality inputs but, more
importantly, in its capacity to extract and utilize useful information
effectively. Specifically, we believe that a well-defended LLM should
possess the following two key characteristics:

• Ability to assess the quality of input content. A robust LLM
should effectively distinguish the quality of documents, deter-
mining which documents are genuinely helpful in addressing the
question and which are useless. On the one hand, distinguishing
the input documents helps LLMs develop critical thinking and
reduces their dependency on the retrieved results. On the other

hand, accurate identification of useful information is also critical
to prevent retrieval defects from affecting the final output.

• Ability to fully utilize useful information in the overall
context. Once the model has developed an initial ability to as-
sess input quality, it should be able to extract and exploit key
information from high-quality and useful content while filtering
out irrelevant or misleading content. Besides, the model should
not only be capable of information filtering but also be able to
synthesize multi-source information during answer generation
to ensure the accuracy and completeness of the output.

Therefore, the core of our strategy lies in equipping LLMs with
stronger self-detection and extraction capabilities, enabling them
to maintain efficient and accurate outputs in complex real-world
scenarios. To achieve this goal, we design two specialized training
tasks, namely Defect Detection and Utility Extraction, corresponding
to input content assessment and effective information filtering,
respectively (as shown in Figure 1). The joint training of these tasks
enables the LLM to improve its resistance to interference in complex
input environments, thereby enhancing the overall robustness of
the RAG system.

4.1 Task I: Defects Detection
The Defect Detection task aims to train the LLM to identify whether
each retrieved document contributes to answering the user’s query.
If a document is useless, the LLM must also classify it into one of
three defect types, i.e., noisy, irrelevant, or counterfactual document.
We treat the original retrieved documents as positive examples and
randomly replace them with different types of defective documents
at a probability of 𝜏 . To improve the efficiency, we adopt a listwise
input format, where the LLM evaluates the entire list of retrieved
documents at once. The prompt for this task is as follows:

Input:
Determine whether the following documents help answer the
given question. The assessment includes:
Assessment 1: The document helps answer the question.
Assessment 2: The document is possibly relevant but does not
help answer the question.
Assessment 3: The document is irrelevant and does not help
answer the question.
Assessment 4: The document contains incorrect information and
does not help answer the question.
Only give me your assessment for each document and do not
output any other words.
Documents:
Doc 1: { document 1 }
Doc 2: { document 2 }
......
Question: { question }

Output:
Doc 1 helps answer the question. / Doc 1 is possibly relevant but
does not help answer the question. / Doc 1 is irrelevant and does not
help answer the question. / Doc 1 contains incorrect information
and does not help answer the question.
Doc 2 ......
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4.2 Task II: Utility Extraction
In the Utility Extraction task, we aim to train the LLM to extract
as much useful information as possible from the defective retrieval
result. The LLM can either directly utilize the extracted relevant
information or leverage the relevant context to activate its internal
parametric knowledge to generate the correct answer. Meanwhile,
Utility Extraction training also enables the LLM to directly and
efficiently handle low-quality or contaminated contexts without
prior cleanup. Similarly, the original documents are replaced with
defective documents at a probability 𝜏 , and the LLM is required to
answer based on these defective retrieval results while producing
correct outputs. The prompt used for this task is as follows:

Input:
Answer the question based on the given document. Only give me
the answer and do not output any other words.
The following are given documents.
Doc 1: { document 1 }
Doc 2: { document 2 }
......
Question: { question }

Output:
{ answer }

4.3 Training Objective
RbFT aims to directly fine-tune the LLM using the two afore-
mentioned tasks, thereby enhancing its organic defense capability.
To achieve efficient training while preserving the LLM’s general-
purpose capabilities, we adopt the Low-RankAdaptation (LoRA) [15]
technique for fine-tuning. Specifically, given the input text 𝑥 , our
goal is to maximize the probability of producing the correct output
text 𝑦:

max
Θ

∑︁
(𝑥,𝑦)

|𝑦 |∑︁
𝑖=1

log
(
𝑝Φ0+ΔΦ(Θ) (𝑦𝑖 |𝑦<𝑖 , 𝑥)

)
(3)

where Φ0 and ΔΦ(Θ) denote the LLM’s original parameters and the
learned parameter adjustments during fine-tuning, respectively.

5 Experimental Settings
5.1 Datasets and Evaluation Metrics
We conduct experiments on three widely used Question Answering
(QA) datasets: Natural Questions (NQ) [23], HotpotQA (HQA) [56],
and TriviaQA (TQA) [21], which cover both factoid QA and multi-
hop QA tasks. Each data instance consists of a query and its corre-
sponding ground truth answer. To create the training and validation
sets, we randomly sample a total of 20,000 instances from the train-
ing splits of these three datasets, where 10% of the training data is
reserved for validation. For evaluation, to ensure efficient exper-
iments, following [48, 53], we sample 1,000 queries from the test
sets of NQ and TQA, as well as the HQA validation set (since HQA
does not provide the test set), respectively (i.e., a total of 3,000 test
queries). The e5-base-v2 [49] retriever is adopted to retrieve the top
100 most relevant documents for each query from the Wikipedia

corpus 1. To assess the performance of different RAG systems un-
der varying levels of retrieval defects, we employ the standard QA
evaluation metrics: exact match (EM) and token-level F1 score (F1),
which measure the precision of the generated answers.

5.2 Baselines
Our RbFT is primarily compared with No RAG, Vanilla RAG, as well
as four state-of-the-art robustness approaches for the RAG system:
RobustRAG [53], CRAG [54], InstructRAG [51] and AstuteRAG [48].
RobustRAG leverages an "isolate-then-aggregate" strategy, where
the LLM independently generates responses for each retrieved pas-
sage and then aggregates these individual responses to produce
the final output. CRAG introduces a lightweight retrieval evaluator
that triggers different knowledge retrieval actions based on evalu-
ation results and enables knowledge refinement. To ensure a fair
comparison of different RAG systems, we disable the module in
CRAG that is responsible for large-scale web searches to acquire
additional knowledge. InstructRAG instructs LLMs to explicitly
denoise retrieved content by generating self-synthesized explana-
tory rationales, which explain how the answer is derived from the
retrieved documents. AstuteRAG, on the other hand, focuses on
resolving conflicts between the internal knowledge of the LLM and
the external knowledge provided by the retriever. It achieves this
goal through an "iterative source-aware knowledge consolidation"
process that integrates the two kinds of knowledge and handles
knowledge conflicts.

5.3 Data Generation
We simulate three types of defective documents using different ap-
proaches. For noisy and irrelevant documents, inspired by the neg-
ative sampling methods commonly used in training dense retrieval
models [22, 33, 58], these two types of defective documents can be
analogized to hard negatives and random negatives, respectively.
Accordingly, noisy documents can be obtained by randomly sam-
pling from lower-ranked retrieval results (e.g., documents ranked
after 50 in the retrieval results), while irrelevant documents can
be randomly sampled from the entire corpus. For counterfactual
documents, we adopt a two-step generation strategy: first, given
the query, the correct answer, and the original retrieval results, we
use Llama-3.2-3B-Instruct [11] to generate a misleading incorrect
answer. Then, we call the LLM again to rewrite all original docu-
ments by replacing all information related to the correct answer
with the misleading incorrect answer:

1https://dl.fbaipublicfiles.com/dpr/wikipedia_split/psgs_w100.tsv.gz

https://dl.fbaipublicfiles.com/dpr/wikipedia_split/psgs_w100.tsv.gz
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Step 1 Input:
Based on a given question and its correct answer, generate
a misleading wrong answer. You can refer to some relevant
documents for inspiration. The wrong answer should belong to
the same entity type as the correct answer (e.g., person, time,
place, organization, data, etc.) to enhance its confusion. If the
answer does not contain an entity, replace a key entity in the
question and treat it as the wrong answer. Only give me the wrong
answer and do not output any other words.
The following are given documents.
Doc 1: { document 1 }
Doc 2: { document 2 }
......
Question: { question }
Correct Answer: { answer }

Step 2 Input:
You are a writing AI. Rewrite the passage by replacing all content
and information related to { correct answer } with { wrong answer }.
Ensure that the rewritten passage is fluent and concise, maintaining
a language style similar to the original. Only give me the rewritten
passage and do not output any other words.
Original Document: { document }

5.4 Implementation Details
Wefine-tune two LLMs on the RbFT task, Llama-3.2-3B-Instruct [11]
and Qwen2.5-3B-Instruct [55], to enhance their robustness against
retrieval defects through the LLaMA-Factory toolkit 2. In the fol-
lowing text, we refer to these two LLMs as Llama and Qwen for
convenience. The fine-tuning is conducted for 2 epochs, with a
learning rate of 1e-5, and a per-device batch size of 16, setting
𝑙𝑜𝑟𝑎_𝑟𝑎𝑛𝑘 = 16 and 𝑙𝑜𝑟𝑎_𝑎𝑙𝑝ℎ𝑎 = 64. LLMs are fine-tuned on
four types of defective data: Noisy, Irrelevant, Counterfactual, and
Mix (randomly selected from the first three types), with the prob-
ability of replacing original retrieval results with defective docu-
ments (𝜏 ) selected from {0.2, 0.4, 0.6, 0.8, 1.0}. During the evaluation
phase, the same 𝜏 values are used, with particular attention given
to 𝜏 = 0.4 and 𝜏 = 1.0, referred to as the Normal and Hard settings,
respectively, representing moderate and severe retrieval defects.
Additionally, to compare the original performance, we also report
their results with the original retrieval results (𝜏 = 0), referred to
as the Clean setting. The retrieval list size 𝑘 is set to 5. Our code
and data are available at the URL 3.

6 Results and Analysis
6.1 Main Results
Table 1 shows the performance of all methods under different levels
of retrieval defects. We observe that:

(1) In the Clean setting, RbFT is the only method that sur-
passes Vanilla RAG. Unlike other approaches that experience
performance degradation in defect-free environments, RbFT can

2https://github.com/hiyouga/LLaMA-Factory
3https://github.com/StibiumT16/Robust-Fine-tuning

Figure 3: The effectiveness-robustness trade-off scatter dia-
gram. The x-axis represents effectiveness measured by the
EM scores of each model in the Clean setting, and the y-axis
represents robustness measured by the EM scores of each
model in the Hard + Mix setting.

enhance robustness while maintaining or even improving perfor-
mance in such scenarios. For example, when using Qwen as the base
model, RbFT achieves a 12.0% improvement in F1 score compared to
Vanilla RAG. This advantage may be attributed to the fact that the
top-ranked results returned by the retriever are rarely flawless and
may contain a certain proportion of defective documents (i.e., false
positives). RbFT actively identifies and adapts to these potentially
defective documents, thereby preventing performance degradation.

(2) In the Normal setting, RbFT consistently achieves the
best performance across all retrieval defect scenarios and is
still the only method that significantly outperforms Vanilla
RAG. Notably, RbFT shows the most substantial improvement in
the counterfactual defect scenario: when using the Llamamodel, the
EM metric improves by 37.3% compared to the second-best method,
while using the Qwen model also results in a 32.9% improvement,
far exceeding other approaches. In other defect scenarios, RbFT
also demonstrates strong superiority, with improvements in both
metrics mainly ranging between 15% and 20%.

(3) In the Hard setting, RbFT continues to outperform all
other methods and further widens the gap with the second-
best approach, highlighting its exceptional performance and adapt-
ability in extremely adverse retrieval environments. Traditional
methods often exhibit instability when handling these complex
issues in such high-difficulty scenarios, where the retrieval results
consist entirely of defective documents. However, RbFT consis-
tently maintains high performance, particularly in the Counter-
factual scenario, where using the Llama model results in an EM
metric improvement of over 70%. This significant advantage further
validates RbFT’s robustness and reliability in dealing with various
complex retrieval scenarios.

(4) RbFT demonstrates significant advantages in balancing
effectiveness and robustness. We refer to the EM score under
the Clean setting as a method’s organic capability in QA tasks (i.e.,
effectiveness), and refer to the EM score under the Hard+ Mix de-
fective setting as the method’s ability to handle complex retrieval
defects (i.e., robustness). Based on these two metrics, we plot the

https://github.com/hiyouga/LLaMA-Factory
https://github.com/StibiumT16/Robust-Fine-tuning
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Table 1: The average evaluation results of each model on the three datasets under the Clean (𝜏 = 0), Normal (𝜏 = 0.4), and
Hard (𝜏 = 1.0) settings. "*" refers to a significant improvement compared to the Vanilla RAG baseline at 𝑝 < 0.05 level using the
two-tailed pairwise t-test. The best and second-best methods are marked in bold and underlined, respectively. The improvement
ratio of the best model over the second-best model is also reported.

LLM Method
Clean (𝜏 = 0)

Normal (𝜏 = 0.4) Hard (𝜏 = 1.0)
Noisy Irrelevant Counterfactual Mix Noisy Irrelevant Counterfactual Mix

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Llama

No RAG 26.5 34.7 - - - - - - - - - - - - - - - -
Vanilla RAG 43.8 52.7 38.2 46.2 38.3 46.3 32.8 40.9 36.8 45.2 16.9 22.0 7.1 9.5 9.0 15.4 11.4 17.1
RobustRAG 32.1 43.5 26.7 37.0 27.2 37.6 24.9 35.2 26.9 37.5 15.0 22.2 4.0 5.8 10.1 18.4* 12.6 19.7*

CRAG 39.4 48.5 35.0 43.1 35.7 43.6 30.4 39.3 32.9 41.6 21.0* 27.4* 21.9* 27.6* 13.5* 20.7* 17.3* 23.8*
InstructRAG 38.0 47.6 32.4 41.3 32.6 41.3 27.7 36.6 31.4 40.2 14.7 21.3 4.0 8.3 9.6 16.6* 11.2 17.2
AstuteRAG 37.6 47.5 34.4 43.8 34.6 43.7 32.2 41.5 33.2 42.7 23.8* 32.1* 22.1* 30.2* 19.6* 28.4* 21.1* 29.6*
RbFT (Ours) 48.4* 58.5* 44.5* 53.9* 44.3* 53.7* 44.2* 54.2* 44.4* 54.0* 31.1* 39.1* 28.2* 36.4* 33.8* 43.1* 31.9* 40.9*
Improvement 10.5% 11.0% 16.5% 16.7% 15.7% 16.0% 37.3% 29.4% 20.7% 19.5% 30.7% 21.8% 27.6% 20.5% 72.4% 51.8% 51.2% 38.2%

Qwen

No RAG 20.8 27.5 - - - - - - - - - - - - - - - -
Vanilla RAG 41.8 50.7 36.1 44.3 36.4 44.6 30.4 38.6 34.2 42.6 15.9 21.6 12.4 15.5 8.9 15.4 11.0 16.9
RobustRAG 25.8 37.6 22.5 33.0 22.5 33.2 19.9 29.9 20.3 31.3 9.9 15.7 2.0 3.3 7.7 14.9 8.4 14.7

CRAG 37.0 45.5 31.1 39.0 32.5 40.0 27.5 35.3 30.2 38.4 17.0* 22.6 13.9* 17.2* 11.4* 17.6* 12.4* 18.0
InstructRAG 35.4 46.6 30.6 40.5 30.8 40.6 25.9 35.9 29.1 38.9 14.8 20.9 8.7 13.1 8.1 15.5 10.1 16.6
AstuteRAG 35.9 46.3 32.3 41.9 32.3 41.6 29.8 39.2 30.8 40.4 18.6* 26.0* 15.7* 21.8* 15.3* 23.4* 16.4* 24.1*
RbFT (Ours) 45.4* 56.8* 40.8* 51.7* 41.0* 51.6* 40.4* 51.5* 40.6* 51.5* 24.6* 33.3* 21.4* 29.9* 25.1* 34.7* 24.0* 33.2*
Improvement 8.6% 12.0% 13.0% 16.7% 12.6% 15.7% 32.9% 31.4% 18.7% 20.9% 32.3% 28.1% 36.3% 37.2% 64.1% 48.3% 46.3% 37.8%

Figure 4: The EM performance of all methods under 4 types of defective data with 𝜏 = {0, 0.2, 0.4, 0.6, 0.8, 1.0}.

effectiveness-robustness scatter diagram. Results in Figure 3 indi-
cate that RbFT outperforms all other methods in both dimensions,
achieving the best overall performance. Specifically, in terms of ef-
fectiveness, RbFT surpasses the second-best method, Vanilla RAG;
while in robustness, it significantly outperforms the most com-
petitive method, AstuteRAG. This indicates that RbFT not only
maintains high answering accuracy but also effectively defends
against various complex retrieval defects, striking a better balance
between effectiveness and robustness.

Figure 4 further illustrates the EM performance of each model
under different retrieval defect types and various 𝜏 values. It can
be observed that RbFT consistently achieves the best performance
across all defect levels and retrieval defect scenarios (i.e., Noisy,
Irrelevant, Counterfactual, and Mix), demonstrating outstanding
robustness and broad applicability. Whether in a noise-free stan-
dard environment or extreme conditions with highly noisy, irrele-
vant, or misleading information, RbFT significantly outperforms
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Table 2: Ablation study on the impact of two fine-tuning tasks, Defects Detection (referred to as DD in the table) and Utility
Extraction (referred to as UE in the table). The EM metrics on the test set and the change ratios of EM between single-task
fine-tuning and RbFT are reported. "*" denotes the result is significantly worse than RbFT with 𝑝 < 0.05 level.

LLM Llama Qwen
Method Vanilla Vanilla + DD Vanilla + UE RbFT Vanilla Vanilla + DD Vanilla + UE RbFT

Clean (𝜏 = 0) 43.8* 49.7(↑ 2.7%) 42.7* (↓ 11.7%) 48.4 41.8* 45.5(↑ 0.0%) 41.5* (↓ 8.6%) 45.4

Normal
(𝜏 = 0.4)

Noisy 38.2* 45.2(↑ 1.6%) 39.7* (↓ 10.8%) 44.5 36.1* 40.7 (↓ 0.0%) 37.9* (↓ 7.1%) 40.8
Irrelevant 38.3* 43.8(↓ 1.1%) 39.5* (↓ 10.8%) 44.3 36.4* 40.2(↓ 2.0%) 37.7* (↓ 8.0%) 41.0

Counterfactual 32.8* 41.3* (↓ 6.6%) 39.9* (↓ 9.7%) 44.2 30.4* 37.8*(↓ 6.4%) 37.1* (↓ 8.2%) 40.4
Mix 36.8* 43.7 (↓ 1.6%) 39.2 (↓ 11.7%) 44.4 34.2* 39.5(↓ 2.7%) 37.1* (↓ 8.6%) 40.6

Hard
(𝜏 = 1.0)

Noisy 16.9* 28.4*(↓ 8.7%) 28.9* (↓ 7.1%) 31.1 15.9* 22.9* (↓ 6.9%) 23.1* (↓ 6.1%) 24.6
Irrelevant 7.1* 24.3*(↓ 13.8%) 25.4* (↓ 9.9%) 28.2 12.4* 18.3*(↓ 14.5%) 18.6* (↓ 13.1%) 21.4

Counterfactual 9.0* 22.7*(↓ 32.8%) 30.3* (↓ 10.4%) 33.8 8.9* 16.4*(↓ 34.7%) 21.6* (↓ 13.9%) 25.1
Mix 11.4* 25.7*(↓ 19.4%) 29.5* (↓ 7.5%) 31.9 11.0* 19.5* (↓ 18.8%) 21.2* (↓ 11.7%) 24.0

Vanilla RAG and other enhancement methods. Moreover, in high-
difficulty scenarios, RbFT further expands its lead over competing
approaches, indicating its superior capability in handling harsh re-
trieval environments. This consistent and substantial performance
improvement indicates that RbFT is not only highly effective in
addressing complex retrieval defects but also better suited for real-
world applications, where potential retrieval defects are common.
As a result, since fluctuations in the quality of retrieved documents
are unavoidable in real-world scenarios, our RbFT method, with
its capability to provide stable and reliable retrieval-generation
responses and maintain strong and consistent robustness, is better
suited to meet practical requirements, making it a valuable solution
for practical application.

6.2 Ablation Study
To further verify the effectiveness and interrelation of the two tasks
in RbFT (i.e., Defects Detection and Utility Extraction), we conduct
ablation experiments by fine-tuning LLMs using each task individ-
ually (referred to as Vanilla + DD and Vanilla + UE, respectively)
to explore their respective roles. Specifically, we adopt the same
training steps, learning rate, and LoRA parameters as those used
in RbFT. It is worth noting that, since the instructions and output
format of the Defects Detection task differ from those of the original
QA tasks, fine-tuning using only Defects Detection data inevitably
results in degraded performance on QA tasks. Therefore, we sup-
plement the training data for Vanilla + DD with QA training data in
the Clean setting (i.e., the original training data). It can be viewed
as the version of RbFT with all defective documents in the Utility
Extraction task replaced with their original retrieved versions.

The results of the ablation study, as shown in Table 2, indicate
that both training tasks contribute to improving the robustness of
LLMs and RAG systems to some extent, though their improvements
are still weaker than RbFT. Specifically, the model fine-tuned solely
with the Utility Extraction task exhibits a performance drop of
approximately 10% compared to RbFT across all three settings. In
contrast, the model fine-tuned with Defects Detection demonstrates
different features. Under settings with weaker retrieval defects (i.e.,
Clean and Normal), Vanilla + DD achieves performance comparable

to RbFT. However, in the more challenging retrieval environment
of the Hard setting, Vanilla + DD falls short of Vanilla + UE in terms
of robustness, especially on the counterfactual data. Therefore, the
Defects Detection and Utility Extraction training tasks are mutually
complementary, working in tandem to reinforce each other’s effec-
tiveness. Only by combining both can we maximize effectiveness in
low-defect scenarios while simultaneously enhancing robustness
in high-defect environments.

6.3 Case Study
In Figure 5, we attempt to analyze further how RbFT enhances
the defense capability of LLMs by examining the attention distri-
bution over tokens of the input document. Specifically, we select
one case for each of the three types of retrieval defects (i.e., noisy,
irrelevant, and counterfactual) and apply retrieval augmentation
to the Llama model using two corresponding defective documents.
For noisy documents, as shown in Figure 5a, the model fine-tuned
with RbFT distributes its attention more evenly across a broader
range of contextually relevant information. In contrast, the Vanilla
model tends to concentrate its attention on distracting and mis-
leading entities, for example, "Fiormonda" in Figure 5a. Similarly,
in the case of counterfactual documents (as shown in Figure 5c),
the RbFT-enhanced model focuses less on the incorrect answer
"Toronto" and more broadly on multiple relevant pieces of con-
textual information, thereby mitigating the impact of erroneous
and misleading content. For irrelevant documents (Figure 5b), the
Vanilla model also over-focuses on certain specific tokens, whereas
the RbFT model distributes its attention more broadly across the
context. In summary, the attention distribution of LLMs fine-tuned
with RbFT becomes smoother compared to the Vanilla LLMs when
processing defective input documents. This smoother attention dis-
tribution helps in two ways. First, it increases the model’s resistance
against incorrect or irrelevant information by reducing excessive
attention to and reliance on such content. Second, even when the
input document does not directly contain the ground-truth answer,
attending to more relevant information in the overall context may
better activate the internal parametric knowledge and memory of
the LLM, thereby facilitating more accurate responses.
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(a) The attention distribution over two input noisy documents of Vanilla RAG and RbFT.

(b) The attention distribution over two input irrelevant documents of Vanilla RAG and RbFT.

(c) The attention distribution over two input counterfactual documents of Vanilla RAG and RbFT.

Figure 5: Case studies on the attention distribution over input documents of Vanilla RAG and RbFT under different retrieval
defects. The greener a document token, the higher the attention it receives during the answer generation process.

6.4 Efficiency Analysis
In Table 3, we assess the time efficiency of different methods during
inference, reporting the average time required by each RAG system
to process a single user query. It can be observed that RbFT, by only
fine-tuning the LLMs, maintains an inference speed comparable to
Vanilla RAG. In contrast, other robustness-oriented methods, except
for InstructRAG, adopt more complex inference mechanisms that
require multiple generation steps or rounds, leading to significantly

higher time costs than Vanilla RAG and RbFT. This demonstrates
that RbFT not only excels in performance but also offers a notable
advantage in efficiency over other baseline models. On the other
hand, RbFT is vertical to these methods and can be integrated with
them to further enhance system robustness.
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Table 3: The inference efficiency of each method.

Method
Inference Efficiency (s / query)
Llama Qwen

Vanilla RAG 0.193 0.198
RobustRAG 1.207 1.300

CRAG 0.401 0.401
InstructRAG 0.198 0.224
AstuteRAG 3.417 3.369

RbFT 0.196 0.196

7 Conclusion
In this work, we introduce Robust Fine-Tuning (RbFT), a novel
fine-tuning approach to enhance the robustness of RAG systems
against retrieval defects. By addressing the critical vulnerabilities in
RAG systems, specifically their susceptibility to defective retrieval
results, RbFT equips LLMs with improved defensive capabilities.
Our dual-task fine-tuning strategy mitigates the impact of defective
retrieval inputs and ensures effective knowledge utilization even
under adverse retrieval conditions. Extensive experimental evalu-
ations demonstrate that RbFT significantly outperforms existing
state-of-the-art methods in terms of robustness and inference effi-
ciency. Notably, RbFT maintains high effectiveness even in clean
environments while offering reliable responses in high-defect set-
tings, making it a robust and practical solution for real-world RAG
applications. In future works, we plan to extend RbFT beyond QA
tasks to a broader range of applications. Additionally, since RbFT
is theoretically vertical to other baselines focusing on inference
strategies and mechanisms, we intend to explore their integration
to develop more efficient and robust RAG systems further.
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