
Parametric Retrieval Augmented Generation
Weihang Su

swh22@mails.tsinghua.edu.cn
DCST, Tsinghua University

Beijing 100084, China

Yichen Tang∗
DCST, Tsinghua University

Beijing 100084, China

Qingyao Ai†
aiqy@tsinghua.edu.cn

DCST, Tsinghua University
Beijing 100084, China

Junxi Yan
DCST, Tsinghua University

Beijing 100084, China

Changyue Wang
DCST, Tsinghua University

Beijing 100084, China

Hongning Wang
DCST, Tsinghua University

Beijing 100084, China

Ziyi Ye
DCST, Tsinghua University

Beijing 100084, China

Yujia Zhou
DCST, Tsinghua University

Beijing 100084, China

Yiqun Liu
DCST, Tsinghua University

Beijing 100084, China

Abstract
Retrieval-augmented generation (RAG) techniques have emerged
as a promising solution to enhance the reliability of large language
models (LLMs) by addressing issues like hallucinations, outdated
knowledge, and domain adaptation. In particular, existing RAG
methods append relevant documents retrieved from external corpus
or databases to the input of LLMs to guide their generation process,
which we refer to as the in-context knowledge injection method.
While this approach is simple and often effective, it has inherent
limitations. Firstly, increasing the context length and number of
relevant documents can lead to higher computational overhead and
degraded performance, especially in complex reasoning tasks. More
importantly, in-context knowledge injection operates primarily at
the input level, but LLMs store their internal knowledge in their pa-
rameters. This gap fundamentally limits the capacity of in-context
methods. To this end, we introduce Parametric retrieval-augmented
generation (Parametric RAG), a new RAG paradigm that integrates
external knowledge directly into the parameters of feed-forward
networks (FFN) of an LLM through document parameterization.
This approach not only saves online computational costs by elimi-
nating the need to inject multiple documents into the LLMs’ input
context, but also deepens the integration of external knowledge
into the parametric knowledge space of the LLM. Experimental
results demonstrate that Parametric RAG substantially enhances
both the effectiveness and efficiency of knowledge augmentation
in LLMs. Also, it can be combined with in-context RAG methods to
achieve even better performance1.

Keywords
Large Language Model, Retrieval Augmented Generation, Knowl-
edge Representation, Parametric Information Representation

1 Introduction
Large Language Models (LLMs) have demonstrated remarkable
capabilities across a wide range of information retrieval (IR) and

∗Contributed equally
†Corresponding author
1We have open-sourced all the code, data, and models in the following anonymized
GitHub link: https://github.com/oneal2000/PRAG

natural language processing (NLP) tasks [5, 6, 11, 36, 48, 55]. De-
spite these successes, a critical limitation remains: once training is
complete, an LLM’s internal knowledge becomes effectively static,
making it challenging to incorporate newly emerging information
or knowledge not included in its pre-training data. To address this
challenge, retrieval-augmented generation (RAG) has emerged as a
prominent solution. RAG enables LLMs to dynamically access and
utilize information beyond their pre-trained parameters by retriev-
ing relevant information from an external corpus, thus improving
their adaptability and performance [4, 12, 16, 18, 23, 44–46].

Existing studies have explored various aspects of the RAGpipeline,
considering factors such as retrieval timing [2, 18, 44, 45], document
selection [21, 58], and external knowledge organization [10, 15, 32].
While these innovations improve different stages of the pipeline,
all RAG methods, regardless of their variations, share a common
characteristic: they inject external knowledge by directly adding
passages or documents into the input context of LLMs, which we
refer to as the in-context knowledge injection.

Although this in-context knowledge injection approach is straight-
forward and often effective, recent studies have highlighted several
limitations of this paradigm. First, injecting knowledge through
input prompts will inevitably increase the context length. Long
context not only introduces extra computational overhead and la-
tency for LLM inference, but also hurts the performance of LLMs in
understanding and utilizing external knowledge, especially in tasks
that involve complex reasoning [22, 26]. Second, more importantly,
the way LLMs process information in context is fundamentally
different from the way they utilize internal knowledge stored in
their parameters. Studies have shown that LLMs store most of
their knowledge within the parameters of their neural network
architecture (e.g., the parameters of their feed-forward network
layers) [31, 59]. Adding passages or documents in the input context
could only affect the online computation of key-value (KV) pairs in
the attention networks of LLMs, but not the model’s stored param-
eters, where its knowledge is encoded [59]. This means that LLMs
may never be able to utilize external knowledge as effectively as
they use their internal knowledge in in-context RAG methods. A
straightforward solution to this problem is to conduct supervised
fine-tuning (SFT) with retrieved documents, thereby incorporating
relevant knowledge directly into the LLM’s parameters. However,

ar
X

iv
:2

50
1.

15
91

5v
1

 [
cs

.C
L

]
 2

7
Ja

n
20

25

Conference, Under Review, Su, et al.

Prompt Template

Merge the

Parameters

Merged Document
Representation

{Retrieved Documents}

Answer the following Question
based on the provided information:
Question: {Question}

LLM
Weight: 𝜽

𝜽! = 𝜽 + ∆𝜽𝜽∆𝜽 = 𝒇(𝒌, 𝜽)

LLM
Weight: 𝜽!

LLM
Weight: 𝜽

······

······

······

Tokenize

Traditional RAG: Inject Retrieved Documents to the Input Context

Original LLM

Original LLM

Question

Fill in the Prompt

Template

Parametric RAG: Inject Retrieved Documents to the LLM’s Parameter

Response

Question

User Input

Retrieved Documents

Corresponding Parametric
Representations of Documents

Response

Figure 1: An illustration of the comparison of in-context RAG and our proposed Parametric RAG paradigms: In-context RAG
combines the tokens of relevant documents and the query in the input, using the original LLM 𝜃 to answer the question without
modifying its parameters. Our proposed Parametric RAG updates the LLM’s parameters 𝜃 ′ = 𝜃 + Δ𝜃 based on the retrieved
documents, temporarily integrating relevant knowledge into LLM’s parameters to answer the question.

such SFT-based methods are considered suboptimal as they require
substantial computational resources and GPU memory, making it
impractical to inject relevant documents online for every query. In
addition, they can negatively affect the original ability of the LLM
to follow instructions [7, 54] and lack the flexibility of in-context
methods, which allow external knowledge to be added or removed
on the fly.

The observations above inspire us to raise the following research
question: Is it possible to inject external knowledge into LLM pa-
rameters effectively, efficiently, and flexibly for retrieval-augmented
generation?

To this end, we introduce a new RAG paradigm, Parametric
Retrieval Augmented Generation (Parametric RAG), which
directly injects the external knowledge into the Feed-Forward Net-
works (FFN) of an LLM. Specifically, our approach begins with
an offline preprocessing phase that parameterizes each document
from the external corpus, transforming them into a small set of
parameters (usually a few MB per document) that can be directly
integrated into the downstream LLM. We refer to this set of pa-
rameters as the parametric representation of the document. In the
inference phase, we conduct retrieval augmented generation fol-
lowing a Retrieve-Update-Generate (RUG) workflow as shown in
Figure 1. The Retrieve step retrieves top-n documents from the
external corpus based on the input prompt following the same pro-
cedure used by the existing RAG pipeline. Then, the Update step
uses the parametric representations of the retrieved documents to
update the LLM. Finally, in the Generate step, we use the updated
LLMs to conduct inference directly based on the original input
prompt.

Theoretical and empirical analysis show that our Parametric RAG
method has superior inference efficiency and outperforms state-of-
the-art in-context methods on several RAG benchmarks that involve
tasks with complex reasoning. While the preprocessing phase of
Parametric RAG introduces an offline computational overhead, this
cost is affordable and even neglectable compared to the online cost

of large-scale inference requests, leading to long-term savings in
terms of power and carbon footprints. Also, similar to in-context
RAG, our method can adapt to various numbers of input documents
on the fly. Furthermore, our proposed Parametric RAG pipeline
is in parallel with existing in-context methods. As shown in our
experiments, combining our methods with in-context RAG could
produce even better performance on the benchmark datasets. This
indicates that parametric knowledge injection could be a fruitful
direction for the future development of the RAG system.

In summary, this paper makes the following key contributions:

• Wepropose Parametric RAG, a newRAGparadigm that integrates
external knowledge directly into LLM’s parameters.

• We propose an offline method to build parametric document rep-
resentation and a Retrieve-Update-Generate pipeline to conduct
Parametric RAG on the fly.

• We conduct extensive experiments to compare the state-of-the-
art in-context RAG methods with our method to demonstrate
the potential of Parametric RAG in terms of effectiveness and
efficiency.

2 Related Work
Large language models have shown remarkable performance across
diverse applications. However, their inherent knowledge often
proves insufficient for tackling knowledge-intensive tasks, under-
scoring the necessity of integrating external knowledge for robust
performance in these contexts. One prominent approach to address
this gap is Retrieval-Augmented Generation (RAG), which improves
LLMs by integrating relevant external knowledge sources [4, 8, 12,
16, 18, 23, 37, 42, 50, 51]. In the traditional RAG framework, an
external retriever [9, 27, 34, 40, 41, 43, 60] or a more complex re-
trieval system [24, 35] retrieves relevant documents based on a
query. These documents are then appended to the LLM’s input con-
text, allowing the LLM to leverage knowledge beyond its training
data [23].

Parametric Retrieval Augmented Generation Conference, Under Review,

Building upon the traditional RAG framework, several exten-
sions have been proposed to improve its effectiveness and efficiency.
One such extension, Adaptive RAG [17, 52], introduces adaptive
retrieval strategies that actively adjust the retrieval pipeline based
on the complexity of the query to improve the adaptability of RAG
in different tasks. From another angle, to make in-context knowl-
edge injection more effective in RAG scenarios, IR-CoT [49] designs
prompt templates specifically tailored for RAG that demonstrate
how to perform chain-of-thought (CoT) reasoning based on the
given passage. Each sentence in the CoT reasoning content is then
applied to retrieve more relevant documents. Another research
direction, GraphRAG [10, 15, 32], employs pre-constructed knowl-
edge graphs to retrieve graph elements that encapsulate relational
knowledge relevant to the query. GraphRAG has demonstrated
enhanced performance, particularly in tasks that require struc-
tured, relational information. In the context of long-form genera-
tion, where the LLM’s informational needs may change during the
generation process, dynamic RAG techniques have been developed
to actively decide when and what to retrieve during the generation
process [3, 19, 25, 44, 45, 57]. For example, FLARE [19] triggers the
retrieval module when the model’s token prediction probability
falls below a predefined threshold. Similarly, DRAGIN [45] models
the real-time information needs of the LLM, generating queries
based on the model’s internal state and preceding context to fetch
relevant external knowledge dynamically.

To summarize, existing RAG approaches have explored vari-
ous aspects of the RAG pipeline, considering factors such as re-
trieval timing [3, 19, 25, 44, 45, 57], prompt template for in-context
knowledge injection [49, 53], document selection [58], and external
knowledge organization[10, 15, 32]. While these innovations im-
prove different stages of the pipeline, all RAG methods, regardless
of their variations, share a common characteristic at the knowledge
injection level: relevant passages or documents are appended di-
rectly to the LLM’s input context to inject external knowledge. In
contrast, our proposed Parametric RAG paradigm diverges from
all the existing RAG frameworks by directly injecting documents
into the LLM’s parameters. This shift in knowledge integration
addresses the inherent limitations of the in-context knowledge
injection methods employed in all existing RAG frameworks.

3 Methodology
In this section, we introduce our proposed Parametric RAG frame-
work, shown in Figure 1. This section begins by formulating the
problem and providing an overview of the Parametric RAG frame-
work (§3.1). Next, we introduce the Offline Document Parameteri-
zation process (§3.2), which transforms documents into parametric
representations through Document Augmentation and Para-
metric Document Encoding. Finally, we introduce the Online
Inference procedure (§3.3), where the parametric representations
are retrieved, merged, and integrated into the LLM to generate
responses.

3.1 Problem Formulation and Overview
This subsection introduces the problem formulation of the RAG
task and provides an overview of our proposed Parametric RAG
pipeline. Consider an LLM (denoted as L) with base parameters

𝜃 . Given a user query 𝑞, we aim to generate an accurate response
using an external corpus 𝐾 . Formally, the corpus 𝐾 is defined as:
𝐾 = {𝑑1, 𝑑2, . . . , 𝑑𝑁 }, where each 𝑑𝑖 represents a text chunk, such
as documents, Wikipedia articles, or passages (for convenience,
we refer to each 𝑑𝑖 as ‘document’ in the following sections). The
system contains a retrieval module 𝑅 that calculates the relevance
score of each document {𝑆𝑑1 , 𝑆𝑑2 , . . . , 𝑆𝑑𝑁 } corresponding to the
query 𝑞. Traditional RAG paradigms select the top 𝑘 documents
with the highest relevance scores as relevant external knowledge
and append them to the input context of the L. This process is
typically guided by a prompt template that instructs L to generate
the response based on the provided knowledge.

In contrast to the in-context RAG paradigm that injects relevant
documents into the LLM’s input context, in Parametric RAG, we
propose to insert documents directly into the parameters of L. To
achieve this, the Parametric RAG framework is designed with two
stages: an offline document parameterization stage and an online
inference stage with a Retrieve-Update-Generate workflow.

Offline document Parameterization. In this step (illustrated in
Figure 2), we offline transform each document in𝐾 into a parametric
representation, thereby forming a set of parameters known as the
Parametric Corpus 𝐾𝑃 . Specifically, we define:

𝐾𝑃 = {𝑝𝑖 | 𝑝𝑖 = 𝑓𝜙 (𝑑𝑖), 𝑖 = 1, 2, . . . , 𝑁 }, (1)
where 𝑓𝜙 is a mapping function that converts each document 𝑑𝑖
into its corresponding parametric representation 𝑝𝑖 . We define
parametric representations 𝑝𝑖 to possess the following properties:
(1) The parameters 𝑝𝑖 can be plugged into the feed-forward net-

work weights of the LLM.
(2) After inserting the parametric representation 𝑝𝑖 into 𝐿, the LLM

can effectively comprehend the knowledge contained within
the corresponding document 𝑑𝑖 .

(3) Different document parameters 𝑝𝑖 can be merged through spe-
cific algorithms, and after merging, the LLM can grasp the
combined knowledge corresponding to the merged documents.

Online Inference. During the online inference process, ourmethod
first merges the parametric representations corresponding to the
retrieved top-k documents and then plugs the merged parameters
into the LLM. Subsequently, the updated LLM is used to answer the
user’s question. This overall framework allows for more efficient
and effective knowledge injection, overcoming the limitations of
traditional RAG by leveraging parameterized representations of
external knowledge.

3.2 Offline Document Parameterization
In this subsection, we describe the detailed process of offline param-
eterizing each document in the corpus 𝐾 during the pre-processing
phase. Given a document 𝑑𝑖 and an LLM L, our objective is to
construct a parametric representation 𝑝𝑖 of the document. This
representation enables L to effectively comprehend and utilize
the knowledge contained in 𝑑𝑖 during inference. To achieve this,
we propose a two-step approach: Document Augmentation and
Parametric Document Encoding. These steps are combined to
generate robust and informative parametric representations for
each document.

Conference, Under Review, Su, et al.

LLM
Weight: 𝜽

Input Fine-tuning

Using 𝑫𝒊

Random LoRA
Weight

Parametric
Representation of 𝒅𝒊

𝒅𝒊

𝒑𝒊

Parametric Document
Encoding

Rewrite 𝒒𝟏 𝒂𝟏

𝒒𝟐 𝒂𝟐

𝒒𝒎 𝒂𝒎

LLM
Weight: 𝜽

…𝒒𝟏 ,	𝒂𝟏Generate

QA Pairs

…

𝒒𝒎	, 𝒂𝒎
…

𝐀𝐮𝐠𝐦𝐞𝐧𝐭𝐞𝐝	𝐃𝐨𝐜𝐮𝐦𝐞𝐧𝐭	𝑫𝒊

Document Augmentation

Figure 2: An illustration of how we parameterize each document 𝑑𝑖 in the corpus during the Offline Document Parameterization
stage.

3.2.1 Document Augmentation. Existing studies have shown that
effectively incorporating factual knowledge from external docu-
ments into LLMs requires more than simply pre-training the model
on raw text via standard next-token prediction. For example, Allen-
Zhu and Li [1] find that after being trained repeatedly on a given
document, LLMs can memorize its content but fail to extract and
apply this knowledge effectively in downstream tasks such as ques-
tion answering. To address this issue, Allen-Zhu and Li [1] propose
two key strategies: (1) incorporating question-answer (QA) pairs
derived from the document during training and (2) augmenting the
document through multiple rewrites that express the same factual
content in different forms. Their findings indicate that these two
approaches enable LLMs to internalize knowledge to support accu-
rate application in downstream tasks rather than reproducing the
original text token-by-token2.

Building upon the insights discussed above, we introduce the doc-
ument augmentation process consisting of two steps: Document
Rewriting and QA Pair Generation, to construct robust and in-
formative parametric representations for documents. Specifically,
for each document, we prompt3 the LLM L to rewrite the content
multiple times using different wording, styles, or organizational
structures. Formally, each document 𝑑𝑖 is transformed into multiple
rewritten documents {𝑑𝑖1, 𝑑𝑖2, . . . , 𝑑𝑖𝑛}, which preserve the orig-
inal facts but vary in language expression. Once each document
has been rewritten into multiple documents, we prompt L again
to generate question-answer (QA) pairs based on the original docu-
ment 𝑑𝑖 . For each document 𝑑𝑖 , L produces a set of questions and
their corresponding answers: {(𝑞𝑖1, 𝑎𝑖1), (𝑞𝑖2, 𝑎𝑖2), . . . , (𝑞𝑖𝑚, 𝑎𝑖𝑚)},
where𝑚 is a tunable hyperparameter representing the number of
QA pairs we aim to generate per document. Integrating multiple
rewrites with corresponding QA pairs transforms each document 𝑑𝑖
into a more comprehensive resource 𝐷𝑖 that preserves its original
factual content while incorporating diverse linguistic variations.
Formally:

𝐷𝑖 = {(𝑑𝑖𝑘 , 𝑞𝑖 𝑗 , 𝑎𝑖 𝑗) | 1 ≤ 𝑘 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚}, (2)
where each (𝑑𝑖𝑘 , 𝑞𝑖 𝑗 , 𝑎𝑖 𝑗) triple corresponds to a rewritten docu-
ment 𝑑𝑖𝑘 from the original document 𝑑𝑖 , coupled with a question
𝑞𝑖

𝑗 and its respective answer 𝑎𝑖 𝑗 .
2Our experimental results corroborate these conclusions, as shown in Figure 3.
3Due to space constraints, we have not included the specific prompts in the main text.
However, all prompts used in this study are available at the following anonymous link:
https://github.com/oneal2000/PRAG/blob/main/all_prompt.md

3.2.2 Parametric Document Encoding. In this subsection, we in-
troduce the second step of the offline document parameterization
pipeline, where we leverage the augmented dataset 𝐷𝑖 (defined
in Eq. 2) to train the parametric representation 𝑝𝑖 for each docu-
ment 𝑑𝑖 . Specifically, we initialize these parametric representations
as low-rank matrices corresponding to the feed-forward network
(FFN) parameter matrix𝑊 of the LLM L, following the LoRA ap-
proach [14]. This design allows each document 𝑑𝑖 to be associ-
ated with independently trained low-rank parameters, allowing the
model to internalize the knowledge specific to 𝑑𝑖 in a parameter-
efficient manner.4

Suppose the Transformer layers in L have a hidden dimension
ℎ, and the feed-forward network (FFN) within each layer has an
intermediate dimension 𝑘 . Consequently, each FFN layer of L con-
tains a weight matrix𝑊 ∈ Rℎ×𝑘 . To incorporate document-specific
knowledge, we introduce low-rank matrices 𝐴 and 𝐵 such that

𝑊 ′ = 𝑊 + Δ𝑊 = 𝑊 +𝐴𝐵⊤, (3)

where 𝐴 ∈ Rℎ×𝑟 and 𝐵 ∈ R𝑘×𝑟 , with 𝑟 ≪ min(ℎ, 𝑘). The original
weight matrix𝑊 is kept fixed, while 𝐴 and 𝐵 are the only trainable
parameters for that layer. We denote these newly introduced param-
eters as Δ𝜃 = {𝐴, 𝐵}. By combining the pre-trained weights𝑊 and
Δ𝜃 , the model obtains the knowledge from the selected document.
Each document in the corpus is associated with its instance of Δ𝜃 .

For each document 𝑑𝑖 , we train its corresponding parametric
representation Δ𝜃 using its corresponding augmented dataset 𝐷𝑖 .
Recall from Eq. 2 that 𝐷𝑖 contains triplets

(
𝑑𝑖

𝑘 , 𝑞𝑖
𝑗 , 𝑎𝑖

𝑗
)
. For each

triplet, we concatenate 𝑑𝑖𝑘 , 𝑞𝑖 𝑗 , and 𝑎𝑖 𝑗 into a token sequence:

𝑥 = [𝑑𝑖𝑘 ⊕ 𝑞𝑖
𝑗 ⊕ 𝑎𝑖

𝑗], (4)

where [· ⊕ ·] indicates concatenation. Let 𝑇 be the total number
of tokens in 𝑥 . We adopt a standard sequential language modeling
objective to ensure that the LLM internalizes knowledge from the
entire augmented text (i.e., both the documents and QA pairs).
Specifically, we optimize:

min
Δ𝜃

∑︁
(𝑑𝑖𝑘 ,𝑞𝑖 𝑗 ,𝑎𝑖 𝑗) ∈𝐷𝑖

𝑇∑︁
𝑡=1

− log 𝑃𝜃+Δ𝜃
(
𝑥𝑡

��𝑥<𝑡), (5)

4Other parameter-efficient methods (e.g., Adapters or Prefix-Tuning) could also be
used; exploring them is left for future work. In this work, we chose LoRA because
it offers practical advantages over other alternatives. For example, LoRA is easier to
merge compared to Adapters, and it requires less computational overhead during
inference compared to Prefix-Tuning.

Parametric Retrieval Augmented Generation Conference, Under Review,

where 𝜃 are the frozen pretrained parameters of the LLM, and
Δ𝜃 = {𝐴, 𝐵} are the trainable low-rank matrices introduced in Eq. 3.
The innermost summation is taken over all tokens 𝑥𝑡 in the con-
catenated input sequence (document, question, and answer)5. This
design inherently encourages the LLM to internalize the factual
details in the documents into its parameters during training. Al-
though the generated question-answer pairs do not directly cover
all the facts within the document, repeated training on the docu-
ments’ tokens allows the model to reinforce its understanding of
the textual content. Consequently, once the training is complete,
the parametric representation Δ𝜃 serves as a lightweight document-
specific knowledge representation that can be directly added to the
original model L at inference time.

Notably, this entire process can be conducted offline, as each
document (or batch of documents) is processed to produce its re-
spective low-rank representation Δ𝜃 . At inference time, we only
need to load the LoRA parameters corresponding to the specific
document(s) rather than appending the document directly into the
LLM’s context. The computational cost of loading these parametric
representations constitutes only a minimal portion, approximately
1% of the computation required to decode a single token.

3.2.3 Discussion on LoRA Initialization. In our proposed training
framework, the LoRA parameters for each document 𝑑𝑖 are initial-
ized randomly without any warm-up stage. This choice is delib-
erate and aligns with our goal of developing a general-purpose
parametric knowledge injection method rather than one tailored
to specific downstream tasks. If not explicitly mentioned other-
wise, we initialize LoRA with random values. However, randomized
LoRA initialization is not necessarily the most effective way to
train parametric document representations. For example, we could
pre-train the random LoRA with a couple of few-shot examples
following the same method described with Eq. (5) and save the
LoRA weight𝑊𝑤𝑎𝑟𝑚−𝑢𝑝 to initialize the training of each docu-
ment’s LoRA (i.e., the document’s parametric representation). Our
experiment (Section § 5.2) demonstrates that this warm-up process
can significantly improve the performance compared to random
initialization on RAG tasks, indicating that a task-aware initializa-
tion can further enhance the effectiveness of parametric knowledge
injection for specific downstream tasks. Yet, we use random ini-
tialization for LoRA if not mentioned explicitly for simplicity and
broad applicability across various tasks.

3.3 Online Inference
In the previous stage (§3.2.2), we generated a set of document-
specific low-rank parameters for each document in the corpus
𝐾 . This section describes how these parameters are utilized for
RAG pipelines. Given a user query 𝑞, our proposed Parametric
RAG pipeline proceeds through three steps: Retrieve, Update, and
Generate. The following section details each step and illustrates
the underlying mathematical operations.

3.3.1 Retrieve. We first use a retriever 𝑅 to calculate a relevance
score 𝑆𝑑𝑖 for each document 𝑑𝑖 ∈ 𝐾 to the query 𝑞. We then select
the top-𝑘 documents with the highest relevance scores, denoted

5The loss is computed not only on the answer but also across the entire concatenated
sequence, including the documents and the question

as {𝑑1, 𝑑2, . . . , 𝑑𝑘 } ⊆ 𝐾 as the relevant external knowledge. Each
retrieved document 𝑑𝑖 has a corresponding parametric representa-
tion, i.e., a pair of low-rank matrices

(
𝐴𝑖 , 𝐵𝑖

)
, previously obtained

by the procedure described in §3.2.2.

3.3.2 Update. After retrieval, we merge the low-rank matrices
from the top-𝑘 retrieved documents to form a single plug-in module
for the LLM. Following the setting of LoRA [14] convention, we use
a scalar scaling factor 𝛼 to modulate the final update. The merged
weight update, Δ𝑊merge, is computed by summing over all retrieved
documents:

Δ𝑊merge = 𝛼 ·
𝑘∑︁
𝑗=1

𝐴 𝑗 𝐵
⊤
𝑗 . (6)

Intuitively, Δ𝑊merge combines the knowledge from multiple rele-
vant documents into a single low-rank update that can be applied
to the LLM’s base parameters. Once we obtain Δ𝑊merge, we update
the original feed-forward weight𝑊 by:𝑊 ′ =𝑊 + Δ𝑊merge, thus
yielding the final set of parameters for that layer at inference time.
Conceptually,𝑊 ′ encodes the base model’s knowledge plus the
aggregated knowledge from the top-𝑘 retrieved documents.

3.3.3 Generate. After updating all feed-forward layers in the Trans-
former with Δ𝑊merge, we obtain a temporary model L′ (𝜃 ′), where
𝜃 ′ represents the updated model parameters, which are obtained by
incorporating the merged low-rank parameters for all retrieved doc-
uments. We can then directly use L′ to generate the final response
to the query 𝑞 using a standard left-to-right decoding process.

3.4 Discussion on Time/Space Efficiency
3.4.1 Computation Cost. The computation cost of our method
can be divided into offline preprocessing cost and online inference
cost. The offline cost primarily arises from the Parametric Docu-
ment Encoding (§3.2.2). Let |𝑑 | be the average number of tokens
in a document 𝑑 , and ℎ be the hidden dimension size of the LLM.
The computational complexity of a typical decoder-only LLM is
O(|𝑑 |2ℎ + |𝑑 |ℎ2), where the attention layers complexity is O(|𝑑 |2ℎ)
plus the FFN layers O(|𝑑 |ℎ2). Theoretically, our method only in-
troduces a constant coefficient change on the number of tokens
processed, thus the overall time complexity remainsO(|𝑑 |2ℎ+|𝑑 |ℎ2).
Based on our implementation settings detailed in § 4.3, the Data
Augmentation process takes the original document 𝑑 as input and
subsequently generates approximately 2|𝑑 | new tokens. This pro-
cess requires computational costs equivalent to a forward pass over
3|𝑑 | tokens, including the decoding of 1|𝑑 | tokens and the infer-
ence of 2|𝑑 | tokens. Training LoRA parameters on these augmented
tokens requires a forward pass over 3|𝑑 | tokens and a backward
pass equivalent to processing 6|𝑑 | tokens (typically about twice
the forward-pass cost), resulting in an overall computational cost
equivalent to processing 9|𝑑 | tokens. Adding the 3|𝑑 | tokens from
the Document Augmentation phase, the total computational cost is
approximately the cost of decoding 12|𝑑 | tokens in the LLM.

The online inference cost mainly depends on the number of in-
put and output tokens. For simplicity, we focus on input tokens
and ignore the variance in output tokens since they vary signifi-
cantly from tasks and LLMs. Let |𝑞 | represent the length of input
prompt/question 𝑞, and 𝑡 be the number of retrieved documents.

Conference, Under Review, Su, et al.

Since the time needed to load the LoRA parameters for 𝑡 docu-
ments is neglectable, the inference time complexity of our method
is O(|𝑞 |2ℎ + |𝑞 |ℎ2). In contrast, the time complexity of in-context
RAG methods is O

(
(𝑡 |𝑑 | + |𝑞 |)2ℎ + (𝑡 |𝑑 | + |𝑞 |)ℎ2

)
, which means

that our method can save O
(
𝑡2 |𝑑 |2ℎ + 𝑡 |𝑑 | |𝑞 |ℎ + 𝑡 |𝑑 |ℎ2

)
time for

online inference. Empirically, suppose that the lengths of 𝑞 and
𝑑 are approximately the same and significantly smaller than the
hidden dimension of the LLM (e.g., about 4096 for LLaMA-8B),
and we retrieve 𝑡 = 6 documents for each 𝑞, then our method
can roughly save 6|𝑑 | tokens in inference. Compared to its offline
cost, this means that Parametric RAG is more cost-friendly than
in-context RAG when the number of queries is more than twice
that of documents in the life cycle of the service.

In summary, while the offline preprocessing step in Parametric
RAG introduces additional computational overhead compared to
traditional RAG, our analysis demonstrates that, when the system
handles a large number of queries, Parametric RAG can provide a
more carbon-efficient solution for large-scale RAG systems.

3.4.2 Storage Overhead. In Parametric RAG, storage overhead
comes from the Parametric Representation of each document, which
consists of low-rank matrices from the FFN layer. Let 𝑟 be the LoRA
rank, 𝑛 be the number of Transformer layers, ℎ be the hidden size,
and 𝑙 the intermediate size of FFN, then the number of parameters
in the Parametric Representation of a document is 2𝑛𝑟 (ℎ + 𝑙). For
example, with the LLaMA3-8B model (32 layers, hidden size 4096,
intermediate size 14336), we need to store approximately 2.36M
extra parameters (with 𝑟 = 2 as used in our experiments). Stored at
16-bit precision, this requires around 4.72MB per document.

While the storage requirements for Parametric RAG may seem
substantial compared to the raw documents, there are multiple
methods to reduce its cost in practice. For example, previous studies
find that the access of information in real user traffic follows a long-
tail distribution [38]. Taking Google as an example, about 96.55% of
Web pages receive zero traffic, and only 1.94% get one to ten visits
per month [39]. Therefore, creating parametric representations for
a tiny set of head documents can serve the majority of user requests,
which significantly reduces the storage cost of Parametric RAG.
Also, as shown in our experiments, Parametric RAG can be used
with in-context RAG together for downstream tasks. Thus, it can
serve as a natural boost to existing RAG methods without breaking
their system pipelines.

4 Experimental Setup
In this section, we detail the experimental framework used to evalu-
ate Parametric RAG. We begin with the introduction of our selected
benchmark datasets(§4.1). Next, we introduce our selected baseline
methods (§4.2) and implementation. Finally, we provide implemen-
tation details regarding our parameterization method, retrieval
strategy, and inference settings (§4.3).

4.1 Benchmarks and Metrics
We evaluate our approach on diverse benchmark datasets, each
designed to assess different reasoning capabilities, such as multi-
hop reasoning and commonsense inference. Specifically, we select
the following datasets:

• 2WikiMultihopQA (2WQA) [13] is a dataset designed to test
the model’s ability to performmulti-hop reasoning by integrating
information across multiple Wikipedia passages.

• HotpotQA (HQA) [56] also focuses on evaluating multi-hop
reasoning skills, requiring models to combine information from
different contexts to address a single query.

• PopQA (PQA) [28] assesses factual question answering, chal-
lenging the model’s ability to recall accurate knowledge and
resolve ambiguity in entity representation.

• ComplexWebQuestions (CWQ) [47] involves answering multi-
step, web-based questions, further testing the model’s capacity
to retrieve and reason over large-scale web content.

For evaluation metrics, we use the F1 score to evaluate performance
on question-answering tasks, as it captures the balance between
precision and recall by accounting for partially correct answers.
Both 2WQA and HQA categorize questions based on reasoning
types, with 2WQA divided into four categories and HQA into two.
To comprehensively compare the performance of P-RAG and other
RAG baselines across different reasoning tasks, our main experi-
mental table (Table 1) presents the performance for each sub-task
separately, using the first 300 questions from each sub-dataset. Ta-
ble 1 also presents the overall performance of each RAG baseline on
the two datasets in the “Total” column. Since the original datasets
contain uneven distributions of question types, the “Total” column
is not a simple average of the sub-dataset performances.

4.2 Baselines
We choose the following RAG baselines for comparison:
• Standard RAG. This RAG method directly appends the top re-
trieved documents to the LLM’s input prompt. The prompt ex-
plicitly instructs the LLM to refer to the provided documents
when answering the question and also includes instructions on
the output format expected from the model.

• DA-RAG incorporates the augmented documents and QA pairs
using the Data Augmentation method introduced in § 3.2.1. This
baseline aims to demonstrate that the performance improvement
observed in Parametric RAG does not stem from the data aug-
mentation phase but from the in-parameter knowledge injection.

• FLARE [19] is a multi-round retrieval augmentation method
that triggers retrieval each time it encounters an uncertain to-
ken. When the retrieval module is triggered, the last generated
sentence without the uncertain tokens is defined as the query.

• DRAGIN [45] is a multi-round retrieval augmentation method. It
triggers retrieval when an uncertain token has semantic meaning
and also has a strong influence on the following tokens. When
the retrieval module is triggered, it formulates the query based
on the model’s internal state and preceding context.

• P-RAG directly injects relevant documents into the LLM’s pa-
rameters through document parameterization, enabling efficient
RAG without increasing the input context length.

• Combine Both. This baseline combines the in-context RAG
method with P-RAG, leveraging both in-context and parametric
knowledge injection. This baseline aims to evaluate whether the
fusion of these approaches leads to better performance.
For P-RAG and all the baselines, we use the same retriever and

select the top 3 retrieved documents as relevant. To ensure a fair

Parametric Retrieval Augmented Generation Conference, Under Review,

Table 1: The overall experiment results of Parametric RAG and other baselines across four tasks. All metrics reported are
F1 scores. Bold numbers indicate the best performance of all baselines, and the second-best results are underlined. “*” and †
denote significantly worse performance than the bolded method and our proposed P-RAG with 𝑝 < 0.05 level, respectively.

2WikiMultihopQA HotpotQA PopQA CWQ
Compare Bridge Inf. Compose Total Bridge Compare Total

LLaMA-1B

Standard RAG 0.4298†* 0.3032†* 0.2263 0.1064 0.2520* 0.2110 0.4083 0.2671 0.1839* 0.3726
DA-RAG 0.3594†* 0.2587†* 0.2266 0.0869†* 0.2531* 0.1716* 0.3713†* 0.2221 0.2012* 0.3691
FLARE 0.4013†* 0.2589†* 0.1960 0.0823†* 0.2234* 0.1630* 0.3784†* 0.1785* 0.1301†* 0.3173*
DRAGIN 0.4556 0.3357* 0.1919 0.0901 0.2692* 0.1431* 0.4015 0.1830* 0.1056†* 0.3900
P-RAG (Ours) 0.4920 0.3994 0.2185 0.1334 0.2764 0.1602* 0.4493 0.1999* 0.2205* 0.3482*
Combine Both 0.5046 0.4595 0.2399 0.1357 0.3237 0.2282 0.4217 0.2689 0.2961 0.4101

Qwen-1.5B

Standard RAG 0.3875†* 0.3884†* 0.1187†* 0.0568†* 0.2431†* 0.1619* 0.3713†* 0.2073* 0.0999†* 0.2823*
DA-RAG 0.3418†* 0.4015 0.1269†* 0.0514†* 0.2156†* 0.1182†* 0.3041†* 0.1683* 0.1197†* 0.2718†*
FLARE 0.1896†* 0.1282†* 0.0852†* 0.0437†* 0.1004†* 0.0750†* 0.1229†* 0.0698†* 0.0641†* 0.1647†*
DRAGIN 0.2771†* 0.1826†* 0.1025†* 0.0680†* 0.1538†* 0.0801†* 0.1851†* 0.0973†* 0.0548†* 0.1788†*
P-RAG (Ours) 0.4529 0.4494 0.2072 0.1372 0.3025 0.1720 0.4623 0.2165* 0.1885 0.3280
Combine Both 0.4053 0.4420 0.1705 0.1154 0.2627 0.2383 0.5037 0.2942 0.2261 0.3495

LLaMA-8B

Standard RAG 0.5843†* 0.4794†* 0.1833†* 0.0991†* 0.3372†* 0.1823†* 0.3493†* 0.2277†* 0.1613†* 0.3545†*
DA-RAG 0.4921†* 0.3344†* 0.1523†* 0.0670†* 0.2396†* 0.1587†* 0.2860†* 0.1996†* 0.2255* 0.3481†*
FLARE 0.4293†* 0.3769†* 0.3086 0.1627* 0.3492* 0.2493†* 0.4324†* 0.2771†* 0.2393* 0.3084†*
DRAGIN 0.5185†* 0.4480†* 0.2664 0.1833 0.3544* 0.2618* 0.6116* 0.2924* 0.1772†* 0.3101†*
P-RAG (Ours) 0.6353 0.5437 0.2471* 0.1992 0.3932 0.3115* 0.6557 0.3563* 0.2413* 0.4541
Combine Both 0.6432 0.5556 0.3160 0.2339 0.4258 0.4025 0.6918 0.4559 0.3059 0.4728

comparison, we ensured that P-RAG and all the baselines share the
same prompt template6 under the same dataset.

4.3 Implementation Details
In this subsection, we introduce the specific implementation of our
experiments:

Base ModelsWe implement Parametric RAG using open-source
pre-trained LLMs. To ensure the broad effectiveness of P-RAG
across different models, we selected LLMs of varying scales and
from different series, including Qwen2.5-1.5B-Instruct [55], LLaMA-
3.2-1B-Instruct [29], and Llama-3-8B-Instruct [30]. All experiments
were conducted using PyTorch on NVIDIA A100 GPUs with 40GB
of memory.

Preprocessing and Parameterization. Consistent with prior
works [19, 20, 44, 45], we utilize Wikipedia dumps as our external
knowledge corpus, specifically adopting the dataset7 proposed by
DPR [20]. For document augmentation, each document is rewritten
once, and three QA pairs are generated based on the document8
(using the downstream LLM, if not mentioned explicitly). In the
LoRA fine-tuning process, the learning rate was set to 3× 10−4, and
the training epoch was set to 1. The LoRAmodules were exclusively
integrated into the feed-forward network (FFN) matrices, excluding
the query, key, and value (𝑄𝐾𝑉) matrices. The scaling factor 𝛼 was
configured to 32, LoRA rank 𝑟 was set to 2, and no dropout was
applied during training to ensure stability and full utilization of
6All the prompt templates used in this paper are available in our GitHub repository:
https://github.com/oneal2000/PRAG/blob/main/all_prompt.md
7https://github.com/facebookresearch/DPR/tree/main
8The detailed prompt template for document augmentation is publicly available on
our official GitHub repository.

the parameter updates. The LoRA weight is randomly initialized
following the setting of the original LoRA paper [14].

Retrieval Module. Recent studies on retrieval-augmented gen-
eration (RAG) [33] reveal that BM25 performs on par with, or even
outperforms, state-of-the-art densemodels in some scenarios. Given
its strong performance, simplicity, and low computational cost, we
adopt BM25 as the retriever for our approach. We use Elasticsearch
as the backend for implementing BM25, with detailed configuration
settings and instructions available on our official GitHub repository.

Generation Configuration. All experiments are conducted us-
ing the publicly released Hugging Face implementations of LLaMA
and Qwen. We adopt the default hyperparameters and chat tem-
plate provided in the official Huggingface repository, with the only
modification being the use of greedy decoding to ensure the repro-
ducibility of our reported results.

5 Experiments
5.1 Main Experiment
In this section, we present the main experimental result and an
in-depth analysis of our proposed Parametric RAG compared with
other RAG baselines and a combined setting that leverages both
parametric and in-context knowledge injection. The experimen-
tal results are presented in Table 1, and we provide the following
analysis: (1) Overall Analysis. P-RAG outperforms existing RAG
frameworks in most of the benchmarks and LLMs evaluated. This
trend is especially obvious for Qwen-1.5B and LLaMA-8B. The
improvements suggest that the incorporation of knowledge into
model parameters can enhance the overall performance of the RAG
pipeline, enabling the model to recall and reason over the injected

Conference, Under Review, Su, et al.

Table 2: Ablation study on the impact of LoRA weight ini-
tialization strategies for P-RAG. All metrics reported are
F1 scores. “P-RAG Rand.” and “P-RAGWarm.” indicate ran-
domly initialized LoRA weights and warm-up LoRA initial-
ization, respectively. The best results are in bold.

2WQA HQA PQA CWQ

LLaMA-1B P-RAG Rand. 0.2764 0.1999 0.2205 0.3482
P-RAGWarm. 0.3546 0.2456 0.2035 0.4263

Qwen-1.5B P-RAG Rand. 0.3025 0.2165 0.1885 0.3280
P-RAGWarm. 0.3542 0.2718 0.2418 0.5018

LLaMA-8B P-RAG Rand. 0.3932 0.3563 0.2413 0.4541
P-RAGWarm. 0.4201 0.4499 0.2952 0.5591

knowledge more effectively. Furthermore, since these gains are
observed in models from different series and parameter sizes, the
results underscore the robustness and broad applicability of P-RAG.
(2) Comparison with DA-RAG. DA-RAG incorporates all the
content generated during the Document Augmentation phase into
the context, whereas our proposed P-RAG consistently outperforms
DA-RAG across all settings. This result demonstrates that the per-
formance improvement observed in Parametric RAG does not stem
from the document augmentation phase, but from the in-parameter
knowledge injection paradigm. (3) Impact of Model Scale on
P-RAG. The performance gap between P-RAG and other RAG
baselines is noticeably more significant when moving from the
LLaMA-1B model to LLaMA-8B. This discrepancy indicates that
parametric injection becomes even more beneficial in larger-scale
models because larger models can better leverage internalized docu-
ment knowledge. (4) Combine In-context RAG and P-RAG. The
combined use of parametric and in-context RAGmethods (Combine
Both) yields the highest overall performance across various datasets
and base LLMs. This result highlights that in-parameter knowledge
injection is not in conflict with traditional RAG methods based on
in-context knowledge injection. Consequently, our proposed doc-
ument parameterization approaches can be seamlessly integrated
for downstream tasks, allowing Parametric RAG to enhance ex-
isting RAG systems without disrupting their pipelines. (5) Other
Findings. Both DRAGIN and FLARE underperform significantly
when applied to Qwen-2.5-1.5B. Our analysis suggests that Qwen-
2.5-1.5B tends to produce highly confident answers regardless of
uncertainty. Since these dynamic RAG frameworks rely on confi-
dence to trigger retrieval, they rarely activate on Qwen-2.5-1.5B.
This highlights a key limitation of uncertainty-based triggers and
underscores the need for more robust mechanisms in dynamic RAG
frameworks.

5.2 Impact of LoRAWeight Initialization
To investigate the impact of LoRA weight initialization strategies
on our proposed Parametric RAG framework, we conducted an
ablation study using two initialization strategies:
(1) Random Initialization (P-RAG Rand.): The LoRA weights are
initialized randomly without any pretraining or warm-up, which
represents the default setting for our proposed Parametric RAG

approach. All the Parametric RAG experimental results reported in
other sections in this paper are based on this setting.
(2)Warm-Up Initialization (P-RAG Warm.): LoRA weights are
pre-trained using a set of 600 sampled question-answer (QA) pairs.
These QA pairs are selected from the training sets of our chosen
benchmarks and are distinct from the test questions to ensure no
data leakage. The pre-training process involves training the LoRA
parameters using the standard next-token prediction method on the
concatenated tokens of the QA pairs. The specific implementation
follows Section 4.3, and the pre-trained LoRA parameters are saved
as initialization for the Document Parameterization phase9.

The experimental results in Table 2 clearly indicate that across
different model series and scales, as well as diverse datasets, the
warm-up initialization strategy (P-RAG Warm.) consistently out-
performs random initialization (P-RAG Rand.). This demonstrates
the effectiveness of task-aware pretraining in enhancing the Para-
metric RAG pipeline. Furthermore, the observed improvements
across varying model sizes confirm the scalability and generality
of this approach. The superior performance of the warm-up ap-
proach in downstream tasks can be attributed to two key factors.
First, it effectively aligns the additional LoRA parameters with the
base LLM before document parameterizing, ensuring a smoother
integration of knowledge. Second, it facilitates the incorporation of
task-relevant knowledge, including output formats and generation
patterns, which are critical for enhancing the quality of response
in certain tasks. This finding suggests that in practical Parametric
RAG applications where the downstream task is fixed, warming
up the LoRA parameters for the task offers a promising approach
to boost effectiveness. It is important to note that our main ex-
periments (as well as all other experiments in this paper) were
conducted using random initialization without any task-specific
optimizations or dataset-specific tuning. This further highlights the
strong generalization capability of our proposed Parametric RAG
paradigm.

These findings also highlight a broader insight: embedding few-
shot examples either in the model’s context or directly into its
parameters leads to improved downstream task performance. In-
terestingly, our proposed parametric information representation
method offers compatibility with few-shot in-context learning, en-
abling a combination of parametric and in-context knowledge aug-
mentation.

5.3 Impact of Document Augmentation
To investigate the individual contributions of the rewriting and
question-answer (QA) generation steps in the document augmen-
tation process, we conduct a series of ablation experiments by
removing (1) both rewriting and QA, (2) QA alone, and (3) rewriting
alone. The experimental results are shown in Figure 3, and we have
the following observations: (1) When neither rewriting nor QA
generation is employed, the performance consistently degrades
significantly across all evaluated tasks and models. This reduction
suggests that simply training the LLM on the selected document via
the next token prediction task without any form of data augmenta-
tion leads to insufficient internalization of facts by the model. (2)

9All the training code and data are publicly available at our anonymous GitHub
repository: https://github.com/oneal2000/PRAG

Parametric Retrieval Augmented Generation Conference, Under Review,

LLaMA Qwen0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32
2WQA

LLaMA Qwen0.14

0.16

0.18

0.20

0.22

HQA

LLaMA Qwen0.00

0.05

0.10

0.15

0.20

PQA

LLaMA Qwen0.20

0.23

0.25

0.28

0.30

0.33

0.35

CWQ

w/o Both w/o QA w/o Rewrite with Both

Figure 3: Ablation study on the impact of the document aug-
mentation stage. LLaMA indicates LLaMA-3.2-1B, and Qwen
indicates Qwen-2.5-1.5B. The metric used is the F1 Score.

Removing either QA or rewriting alone yields better results than
removing both, indicating that each step offers distinct benefits.
However, we notice that removing QA leads to a more significant
performance decline than removing rewriting. This observation
suggests that QA pair generation is more crucial for pushing the
model to recall and apply factual information while rewriting offers
valuable diversity in phrasing and structure and benefits the overall
performance. (3) Incorporating both rewriting and QA results in the
strongest overall performance on most of the evaluated tasks and
models. These findings reinforce that rewriting and QA generation
play complementary roles.

In general, this ablation study indicates that both rewriting and
QA generation significantly enhance the performance of document
parameterizing. Their integration produces the best performance.
Rewriting expands the coverage and diversity of context, while QA
explicitly encourages the model to encode the knowledge of the
selected document in a necessary way to apply the knowledge for
downstream tasks. Therefore, it is advisable to incorporate both
components of our document augmentation for effective internal-
ization of knowledge.

5.4 Impact of Data-augmentation Model
To evaluate the impact of the choice of LLM in the Document
Augmentation phase, we conducted an ablation study comparing
different configurations of the model used for document rewriting
and QA pair generation. In our default setting, we use the same
LLM for both the document augmentation process and the down-
stream task. However, to explore whether the performance of our
method is sensitive to this choice, we tested alternative configu-
rations. Specifically, we tested different model sizes by using both
smaller and larger LLMs for document augmentation and QA pair
generation. The experimental results are shown in Table 3, indi-
cating that our framework demonstrates an insensitivity to the

Table 3: Ablation study comparing different document aug-
mentation models. GenLM indicates the generator LLM
and AugLM indicates the LLM for document augmentation.
LLaMA indicates LLaMA-3.2-1B, and Qwen indicates Qwen-
2.5-1.5B. The best results are in bold. The metric used in the
table is F1 Score.

GenLM AugLM Dataset

2WQA HQA PQA CWQ

LLaMA-1B
LLaMA-1B 0.2764 0.1999 0.2205 0.3482
Qwen-1.5B 0.2753 0.1980 0.2340 0.3495
LLaMA-8B 0.2748 0.1935 0.2207 0.3498

Qwen-1.5B
LLaMA-1B 0.2974 0.2005 0.1829 0.3183
Qwen-1.5B 0.3025 0.2165 0.1885 0.3280
LLaMA-8B 0.2948 0.2161 0.2156 0.3211

choice of data augmentation model. Performance remains consis-
tent across different setups, regardless of whether a smaller, larger,
or the same model as the generator is used for data augmentation.
Importantly, using a small model for augmentation yields compa-
rable results to employing significantly larger models, indicating
that the augmentation step does not require high-capacity models
to be effective. Similarly, when the same model is used for both
generation and augmentation, the outcomes are indistinguishable
from those where separate models are employed.

5.5 Runtime Analysis
We present the inference time for the LLaMA3-8B model across
various RAG baselines on 2WikiMultihopQA (2WQA) and Com-
plexWebQuestions (CWQ) in Table 4. This evaluation simulates the
online inference latency for answering a question using different
RAG approaches. All experiments were conducted on the same
GPU server to ensure consistent evaluation conditions. The experi-
mental results indicate that P-RAG reduces the time per question
by 29% to 36% compared to Standard RAG. Notably, the Combine
Both baseline, which showed the best performance and significant
improvements in the main experiment, requires almost the same
online computation time as the Standard RAG method. In contrast,
multi-round RAG frameworks like DRAGIN and FLARE exhibit
significantly higher latency for answering a question compared to
single-roundmethods. For both P-RAG and Combine Both baselines,
we present the inference times separately from the time required
for merging and loading the LoRA (0.32s). This distinction arises
because, in our current implementation, the time spent on merging
and loading the LoRA significantly exceeds theoretical expectations.
The floating-point operations involved in the LoRA operation step
contribute less than 1% to the total computational cost of generat-
ing a response [14], but the latency of memory loading and data
communications in our current implementation is far from perfect.
We believe this latency can potentially be addressed through en-
gineering optimizations. It is important to note that our analysis
primarily emphasizes the relative time ratios and trends across the
different methods, as actual application times and latencies can
vary depending on hardware configurations, such as CPU, GPU,
memory, and storage.

Conference, Under Review, Su, et al.

Table 4: The average time required by the LLaMA3-8B model
to answer a question on the 2WikiMultihopQA (2WQA) and
ComplexWebQuestions (CWQ) datasets. The "+0.32" footnote
for P-RAG and Combine Both indicates the total time needed
for merging and loading the LoRA adapter.

2WQA CWQ

Time(s) Speed Up Time(s) Speed Up

P-RAG 2.34+0.32 1.29x 2.07+0.32 1.36x
Combine Both 3.08+0.32 0.98x 2.84+0.32 0.99x
Standard RAG 3.03 1.00x 2.82 1.00x
FLARE 10.14 0.25x 11.31 0.25x
DRAGIN 14.60 0.21x 16.21 0.17x

6 Conclusion and Future Directions
This work introduces Parametric RAG, a novel framework that
addresses the limitations of in-context knowledge augmentation
by parameterizing external documents. Parametric RAG infuses
these parameterized documents directly into the model, reducing
contextual overload and online computational costs while maintain-
ing robust performance. Our experiments on multiple benchmarks
demonstrate that Parametric RAG outperforms traditional retrieval-
augmented generation methods across different LLMs. Ultimately,
Parametric RAG offers a more efficient and scalable pathway to
integrate external knowledge into LLMs, paving the way for further
innovation in parametric-based knowledge augmentation.

Despite its significant potential, Parametric RAG presents sev-
eral challenges that warrant further investigation. First, the current
parameterization process is computationally intensive, and the para-
metric representations of each document are substantially larger
than plain text. Future work could exploremoremethods to improve
computational and storage efficiency, making the parameterization
process more scalable. Second, the parameterized documents are
currently tied to specific LLMs, restricting their ability to generalize
across different models. Developing universal, model-agnostic rep-
resentations could significantly enhance flexibility and reuse across
diverse systems. Finally, we believe the potential applications of
information parameterization can be extended beyond RAG. For
instance, LLM-based agents could benefit from parameterizing the
agent’s profiles and configuration, which could alleviate context-
length constraints and improve online computational efficiency.
By addressing these challenges, future research could unlock more
potential for the Parametric RAG paradigm.

References
[1] Zeyuan Allen-Zhu and Yuanzhi Li. [n. d.]. Physics of Language Models: Part

3.1, Knowledge Storage and Extraction. In Forty-first International Conference on
Machine Learning.

[2] Akari Asai, ZeqiuWu, YizhongWang, Avirup Sil, and Hannaneh Hajishirzi. [n. d.].
Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection.
In The Twelfth International Conference on Learning Representations.

[3] Ingeol Baek, Hwan Chang, Byeongjeong Kim, Jimin Lee, and Hwanhee Lee. 2024.
Probing-RAG: Self-Probing to Guide Language Models in Selective Document
Retrieval. arXiv preprint arXiv:2410.13339 (2024).

[4] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Ruther-
ford, Katie Millican, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bog-
dan Damoc, Aidan Clark, et al. 2022. Improving language models by retrieving
from trillions of tokens. In International conference on machine learning. PMLR,

2206–2240.
[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[6] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, et al. 2022. Palm: Scaling language modeling with pathways.
arXiv preprint arXiv:2204.02311 (2022).

[7] Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng Xue, Dayi-
heng Liu, Wei Wang, Zheng Yuan, Chang Zhou, and Jingren Zhou. 2023. How
abilities in large language models are affected by supervised fine-tuning data
composition. arXiv preprint arXiv:2310.05492 (2023).

[8] Qian Dong, Qingyao Ai, Hongning Wang, Yiding Liu, Haitao Li, Weihang Su,
Yiqun Liu, Tat-Seng Chua, and Shaoping Ma. 2025. Decoupling Knowledge and
Context: An Efficient and Effective Retrieval Augmented Generation Framework
via Cross Attention. In Proceedings of the ACM on Web Conference 2025.

[9] QianDong, Yiding Liu, QingyaoAi, Haitao Li, ShuaiqiangWang, Yiqun Liu, Dawei
Yin, and Shaoping Ma. 2023. I3 retriever: incorporating implicit interaction in
pre-trained language models for passage retrieval. In Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management. 441–451.

[10] Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva
Mody, Steven Truitt, and Jonathan Larson. 2024. From local to global: A graph
rag approach to query-focused summarization. arXiv preprint arXiv:2404.16130
(2024).

[11] Yan Fang, Jingtao Zhan, Qingyao Ai, Jiaxin Mao, Weihang Su, Jia Chen, and Yiqun
Liu. 2024. Scaling laws for dense retrieval. In Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1339–1349.

[12] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, andMingwei Chang. 2020.
Retrieval augmented language model pre-training. In International conference on
machine learning. PMLR, 3929–3938.

[13] Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. 2020.
Constructing a multi-hop QA dataset for comprehensive evaluation of reasoning
steps. arXiv preprint arXiv:2011.01060 (2020).

[14] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu
Wang, Weizhu Chen, et al. 2022. LoRA: Low-Rank Adaptation of Large Language
Models. In International Conference on Learning Representations.

[15] Yuntong Hu, Zhihan Lei, Zheng Zhang, Bo Pan, Chen Ling, and Liang Zhao. 2024.
GRAG: Graph Retrieval-Augmented Generation. arXiv preprint arXiv:2405.16506
(2024).

[16] Gautier Izacard and Edouard Grave. 2020. Leveraging passage retrieval with
generative models for open domain question answering. arXiv preprint
arXiv:2007.01282 (2020).

[17] Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju Hwang, and Jong Park.
2024. Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language
Models through Question Complexity. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), Kevin Duh, Helena Gomez, and
Steven Bethard (Eds.). Association for Computational Linguistics, Mexico City,
Mexico, 7036–7050. https://doi.org/10.18653/v1/2024.naacl-long.389

[18] Zhengbao Jiang, Luyu Gao, Jun Araki, Haibo Ding, Zhiruo Wang, Jamie Callan,
and Graham Neubig. 2022. Retrieval as attention: End-to-end learning of retrieval
and reading within a single transformer. arXiv preprint arXiv:2212.02027 (2022).

[19] Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu,
Yiming Yang, Jamie Callan, and GrahamNeubig. 2023. Active retrieval augmented
generation. arXiv preprint arXiv:2305.06983 (2023).

[20] Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. arXiv preprint arXiv:2004.04906 (2020).

[21] Zixuan Ke, Weize Kong, Cheng Li, Mingyang Zhang, Qiaozhu Mei, and Michael
Bendersky. 2024. Bridging the preference gap between retrievers and llms. arXiv
preprint arXiv:2401.06954 (2024).

[22] Mosh Levy, Alon Jacoby, and Yoav Goldberg. 2024. Same task, more tokens: the
impact of input length on the reasoning performance of large language models.
arXiv preprint arXiv:2402.14848 (2024).

[23] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp tasks.
Advances in Neural Information Processing Systems 33 (2020), 9459–9474.

[24] Haitao Li, Jia Chen, Weihang Su, Qingyao Ai, and Yiqun Liu. 2023. Towards
better web search performance: pre-training, fine-tuning and learning to rank.
arXiv preprint arXiv:2303.04710 (2023).

[25] Huanshuo Liu, Hao Zhang, Zhijiang Guo, Kuicai Dong, Xiangyang Li, Yi Quan
Lee, Cong Zhang, and Yong Liu. 2024. CtrlA: Adaptive Retrieval-Augmented
Generation via Probe-Guided Control. arXiv preprint arXiv:2405.18727 (2024).

[26] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2024. Lost in the middle: How language models

https://doi.org/10.18653/v1/2024.naacl-long.389

Parametric Retrieval Augmented Generation Conference, Under Review,

use long contexts. Transactions of the Association for Computational Linguistics
12 (2024), 157–173.

[27] Yixiao Ma, Yueyue Wu, Weihang Su, Qingyao Ai, and Yiqun Liu. 2023. CaseEn-
coder: A Knowledge-enhanced Pre-trained Model for Legal Case Encoding. arXiv
preprint arXiv:2305.05393 (2023).

[28] Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and
Hannaneh Hajishirzi. 2023. When Not to Trust Language Models: Investigating
Effectiveness of Parametric and Non-Parametric Memories. In Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.).
Association for Computational Linguistics, Toronto, Canada, 9802–9822. https:
//doi.org/10.18653/v1/2023.acl-long.546

[29] Meta. 2024. Llama-3.2-1B-Instruct. https://huggingface.co/meta-llama/Llama-
3.2-1B-Instruct Accessed: 2024-09.

[30] Meta. 2024. Meta-Llama-3-8B-Instruct. https://huggingface.co/meta-llama/Meta-
Llama-3-8B-Instruct Accessed: 2024-04.

[31] Neel Nanda, Senthooran Rajamanoharan, János Kramár, and Rohin Shah. 2023.
Fact Finding: Attempting to Reverse-Engineer Factual Recall on the Neuron
Level. https://www.lesswrong.com/posts/iGuwZTHWb6DFY3sKB/fact-finding-
attempting-to-reverse-engineer-factual-recall Accessed: 2025-01-24.

[32] Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo, Haizhou Shi, Chuntao Hong, Yan
Zhang, and Siliang Tang. 2024. Graph retrieval-augmented generation: A survey.
arXiv preprint arXiv:2408.08921 (2024).

[33] Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin
Leyton-Brown, and Yoav Shoham. 2023. In-context retrieval-augmented language
models. arXiv preprint arXiv:2302.00083 (2023).

[34] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009), 333–389.

[35] Alireza Salemi and Hamed Zamani. 2024. Towards a search engine for machines:
Unified ranking for multiple retrieval-augmented large language models. In
Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 741–751.

[36] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel
Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias
Gallé, et al. 2022. Bloom: A 176b-parameter open-access multilingual language
model. arXiv preprint arXiv:2211.05100 (2022).

[37] Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike
Lewis, Luke Zettlemoyer, and Wen-tau Yih. 2023. Replug: Retrieval-augmented
black-box language models. arXiv preprint arXiv:2301.12652 (2023).

[38] Craig Silverstein, Hannes Marais, Monika Henzinger, and Michael Moricz. 1999.
Analysis of a very large web search engine query log. SIGIR Forum 33, 1 (Sept.
1999), 6–12. https://doi.org/10.1145/331403.331405

[39] Tim Soulo. 2023. 96.55% of Content Gets No Traffic From Google. Here’s How to
Be in the Other 3.45% [New Research for 2023]. https://ahrefs.com/blog/search-
traffic-study/ Accessed: 2025-01-24.

[40] Weihang Su, Qingyao Ai, Xiangsheng Li, Jia Chen, Yiqun Liu, Xiaolong Wu, and
Shengluan Hou. 2023. Wikiformer: Pre-training with Structured Information of
Wikipedia for Ad-hoc Retrieval. arXiv preprint arXiv:2312.10661 (2023).

[41] Weihang Su, Qingyao Ai, Yueyue Wu, Yixiao Ma, Haitao Li, and Yiqun Liu. 2023.
Caseformer: Pre-training for Legal Case Retrieval. arXiv preprint arXiv:2311.00333
(2023).

[42] Weihang Su, Yiran Hu, Anzhe Xie, Qingyao Ai, Quezi Bing, Ning Zheng, Yun Liu,
Weixing Shen, and Yiqun Liu. 2024. STARD: A Chinese Statute Retrieval Dataset
Derived fromReal-life Queries by Non-professionals. In Findings of the Association
for Computational Linguistics: EMNLP 2024, Yaser Al-Onaizan, Mohit Bansal, and
Yun-Nung Chen (Eds.). Association for Computational Linguistics, Miami, Florida,
USA, 10658–10671. https://doi.org/10.18653/v1/2024.findings-emnlp.625

[43] Weihang Su, Xiangsheng Li, Yiqun Liu, Min Zhang, and Shaoping Ma. 2023.
Thuir2 at ntcir-16 session search (ss) task. arXiv preprint arXiv:2307.00250 (2023).

[44] Weihang Su, Yichen Tang, Qingyao Ai, Changyue Wang, Zhijing Wu, and Yiqun
Liu. 2024. Mitigating entity-level hallucination in large language models. In
Proceedings of the 2024 Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval in the Asia Pacific Region. 23–31.

[45] Weihang Su, Yichen Tang, Qingyao Ai, ZhijingWu, and Yiqun Liu. 2024. DRAGIN:
Dynamic Retrieval Augmented Generation based on the Real-time Information
Needs of Large Language Models. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (Eds.). Association for Computational
Linguistics, Bangkok, Thailand, 12991–13013. https://doi.org/10.18653/v1/2024.
acl-long.702

[46] Weihang Su, Changyue Wang, Qingyao Ai, Yiran Hu, Zhijing Wu, Yujia Zhou,
and Yiqun Liu. 2024. Unsupervised real-time hallucination detection based on the
internal states of large language models. arXiv preprint arXiv:2403.06448 (2024).

[47] Alon Talmor and Jonathan Berant. 2018. The Web as a Knowledge-Base for
Answering Complex Questions. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), Marilyn Walker, Heng Ji, and

Amanda Stent (Eds.). Association for Computational Linguistics, New Orleans,
Louisiana, 641–651. https://doi.org/10.18653/v1/N18-1059

[48] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[49] Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal.
2022. Interleaving retrieval with chain-of-thought reasoning for knowledge-
intensive multi-step questions. arXiv preprint arXiv:2212.10509 (2022).

[50] Changyue Wang, Weihang Su, Qingyao Ai, and Yiqun Liu. 2024. Knowledge
Editing through Chain-of-Thought. arXiv preprint arXiv:2412.17727 (2024).

[51] Changyue Wang, Weihang Su, Hu Yiran, Qingyao Ai, Yueyue Wu, Cheng Luo,
Yiqun Liu, Min Zhang, and Shaoping Ma. 2024. LeKUBE: A Legal Knowledge
Update BEnchmark. arXiv preprint arXiv:2407.14192 (2024).

[52] Yile Wang, Peng Li, Maosong Sun, and Yang Liu. 2023. Self-knowledge guided
retrieval augmentation for large language models. arXiv preprint arXiv:2310.05002
(2023).

[53] Zihao Wang, Anji Liu, Haowei Lin, Jiaqi Li, Xiaojian Ma, and Yitao Liang. 2024.
Rat: Retrieval augmented thoughts elicit context-aware reasoning in long-horizon
generation. arXiv preprint arXiv:2403.05313 (2024).

[54] Tongtong Wu, Linhao Luo, Yuan-Fang Li, Shirui Pan, Thuy-Trang Vu, and Gho-
lamreza Haffari. 2024. Continual learning for large language models: A survey.
arXiv preprint arXiv:2402.01364 (2024).

[55] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5
Technical Report. arXiv preprint arXiv:2412.15115 (2024).

[56] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan
Salakhutdinov, and Christopher D Manning. 2018. HotpotQA: A dataset for di-
verse, explainable multi-hop question answering. arXiv preprint arXiv:1809.09600
(2018).

[57] Zijun Yao, Weijian Qi, Liangming Pan, Shulin Cao, Linmei Hu, Weichuan Liu,
Lei Hou, and Juanzi Li. 2024. Seakr: Self-aware knowledge retrieval for adaptive
retrieval augmented generation. arXiv preprint arXiv:2406.19215 (2024).

[58] Yue Yu, Wei Ping, Zihan Liu, Boxin Wang, Jiaxuan You, Chao Zhang, Mohammad
Shoeybi, and Bryan Catanzaro. 2024. Rankrag: Unifying context ranking with
retrieval-augmented generation in llms. arXiv preprint arXiv:2407.02485 (2024).

[59] Zeping Yu and Sophia Ananiadou. 2024. Neuron-Level Knowledge Attribution
in Large Language Models. In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, Yaser Al-Onaizan, Mohit Bansal, and
Yun-Nung Chen (Eds.). Association for Computational Linguistics, Miami, Florida,
USA, 3267–3280. https://doi.org/10.18653/v1/2024.emnlp-main.191

[60] ChengXiang Zhai. 2008. Statistical language models for information retrieval.
Synthesis lectures on human language technologies 1, 1 (2008), 1–141.

https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://www.lesswrong.com/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall
https://www.lesswrong.com/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall
https://doi.org/10.1145/331403.331405
https://ahrefs.com/blog/search-traffic-study/
https://ahrefs.com/blog/search-traffic-study/
https://doi.org/10.18653/v1/2024.findings-emnlp.625
https://doi.org/10.18653/v1/2024.acl-long.702
https://doi.org/10.18653/v1/2024.acl-long.702
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.18653/v1/2024.emnlp-main.191

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Formulation and Overview
	3.2 Offline Document Parameterization
	3.3 Online Inference
	3.4 Discussion on Time/Space Efficiency

	4 Experimental Setup
	4.1 Benchmarks and Metrics
	4.2 Baselines
	4.3 Implementation Details

	5 Experiments
	5.1 Main Experiment
	5.2 Impact of LoRA Weight Initialization
	5.3 Impact of Document Augmentation
	5.4 Impact of Data-augmentation Model
	5.5 Runtime Analysis

	6 Conclusion and Future Directions
	References

