
Encoding History with Context-aware Representation Learning
for Personalized Search

Yujia Zhou2, Zhicheng Dou1, and Ji-Rong Wen3,4
1Gaoling School of Artificial Intelligence, Renmin University of China

2School of Information, Renmin University of China
3Beijing Key Laboratory of Big Data Management and Analysis Methods
4Key Laboratory of Data Engineering and Knowledge Engineering, MOE

zhouyujia@ruc.edu.cn,dou@ruc.edu.cn,jirong.wen@gmail.com

ABSTRACT
The key to personalized search is to clarify the meaning of current
query based on user’s search history. Previous personalized studies
tried to build user profiles on the basis of historical data to tailor the
ranking. However, we argue that the user profile based methods do
not really disambiguate the current query. They still retain some
semantic bias when building user profiles. In this paper, we propose
to encode history with context-aware representation learning to
enhance the representation of current query, which is a direct way
to clarify the user’s information need. Specifically, endowed with
the benefit from transformer on aggregating contextual information,
we devise a query disambiguation model to parse the meaning of
current query in multiple stages. Moreover, for covering the cases
that current query is not sufficient to express the intent, we train a
personalized language model to predict user intent from existing
queries. Under the interaction of two sub-models, we can generate
the context-aware representation of current query and re-rank
the results based on it. Experimental results show the significant
improvement of our model compared with previous methods.

CCS CONCEPTS
• Information systems → Personalization.

KEYWORDS
Personalized search; Context-awaremodel; Hierarchical transformer
ACM Reference Format:
Yujia Zhou, Zhicheng Dou, Ji-Rong Wen. 2020. Encoding History with
Context-aware Representation Learning for Personalized Search. In Pro-
ceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’20), July 25–30, 2020, Virtual
Event, China. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3397271.3401175

1 INTRODUCTION
Search engine has become a common tool for obtaining informa-
tion from the web. Due to differences in individual preferences,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’20, July 25–30, 2020, Virtual Event, China
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8016-4/20/07. . . $15.00
https://doi.org/10.1145/3397271.3401175

the same query often represents different query intents. Therefore,
it is difficult to meet the needs of all users by returning the same
document list for them. In order to solve this problem, personalized
search tries to model the user’s preference and re-rank the search
results based on it. Traditional strategies of personalized search
[4, 6, 13, 29, 31, 35, 36] built user models by extracting personalized
features from the query logs. They prove the value of user histori-
cal click-through data to tailor the ranking. In recent years, deep
learning based methods [12, 17, 18, 29] were proposed to learn the
representations for discovering deep semantic relevance, which
brought significant improvements in retrieval quality.

Previous methods have revealed that the majority of queries
issued by users are short and ambiguous [8, 28]. Capturing user’s
real intent is a critical step for personalization when receiving an
ambiguous query. Most of existing studies focus on building user
profiles according to user historical data, and highlighted the rel-
evant part based on the current query to re-rank the candidate
documents. However, we argue that they did not essentially dis-
ambiguate the current query, but summarize user interests from
historical behaviors. This will still cause semantic deviations when
building the user profiles due to the ambiguity of the current query.
For example, assuming that a user searched the query "java pro-
gramming" and "Hawaii Island" in the past. For the current query
"java", which combines the semantics of "java programming lan-
guage" and "java island", user profile based methods will highlight
both of historical queries and consider their impact on the results.
Such a user profile is biased owing to the ambiguity of "java". In-
tuitively, in specific context of user’s search history, the semantic
representation of "java" should be unique and reflects clear infor-
mation needs. In this paper, we aim to abandon the establishment
of user profile. Instead we regard the historical data as contextual
information to refine the representation of the current query.

Existing context-aware methods of document ranking are mainly
to encode the contextual information through Recurrent Neural
Networks [2, 20] or Convolutional Neural Network [9]. However,
these methods focus on local relations which still face the challenge
of long-term dependency. Transformer [32], a structure based on
self-attention mechanism, has achieved great success in various
tasks thanks to the characteristic of global interaction. Its advan-
tages perfectly fit the needs of personalized search on long-term
dependency. Due to its powerful ability of leveraging contextual
information, we intend to apply it to encode history.

The ambiguity of the query mainly comes from vague terms in it,
which may lead to misunderstanding. And making use of the con-
text of surrounding terms is a feasible solution to disambiguation.

Session 6C: Context-aware Modeling SIGIR ’20, July 25–30, 2020, Virtual Event, China

1111

https://doi.org/10.1145/3397271.3401175
https://doi.org/10.1145/3397271.3401175
https://doi.org/10.1145/3397271.3401175

However, since queries are often short and consist of only a few key-
words, relying on limited words is not enough to deduce user intent.
It is necessary to use search history to disambiguate the current
query. Previous studies [4, 12, 16] have considered the effect of his-
torical data in different time period. They divided the search history
into short-term (current session) and long-term (previous sessions)
to model user interests respectively. Due to the hierarchical struc-
ture of query logs, we intend to establish a query disambiguation
model with hierarchical transformer to disambiguate the current
query in multiple stages. In addition, due to the randomness of
user’s behavior when searching, the query sometimes is hard to
express the information needs as a result of misspelling or deviating
expression. In such a case, user’s real intent cannot be obtained sim-
ply by disambiguation. Inspired by the masked language model in
BERT [10], we believe that the series of queries for an information
need have a specific pattern. We attempt to build a personalized
language model capturing such patterns to predict the user intent.

Specifically, we propose a context-aware neural retrieval model,
which incorporates rich contextual information including query
terms, short-term history, and long-term history to refine the rep-
resentation of the current query. It consists of two hierarchical
transformer-based sub-models, the query disambiguation model
and the personalized language model. The former is used to dis-
ambiguate the current query multiple times on the basis of its
terms and historical interactions, while the latter tries to learn the
personalized search patterns of users to more accurately infer the
user intent. Finally, with the interaction of the two sub-models,
we can obtain a context-aware query representation with specific
intent, and compute its relevance to each candidate documents to
personalize the results.

The main contributions of this paper are summarized as follows:
(1) We encode the user’s history with context-aware representation
learning for personalized search without user profile. (2) We devise
a query disambiguation model with rich contextual information
to understand the user needs on the basis of the current query.
(3) To cover situations where the current query fails to express
information needs, we build a personalized language model to
predict the user intent according to existing queries. (4) We apply a
gate to fuse the two sub-models, and add supervision information
to the predicted user intent for further optimization.

The rest of paper is arranged as follows. Related works are sum-
marized in Section 2. The proposed method is shown in Section 3.
We introduce the experimental settings in Section 4, and analyze
the results in Section 5. The conclusion is drawn in Section 6.

2 RELATEDWORK
2.1 Personalizing Web Search
Personalized search has become a hot research field due to its ability
to meet the information needs of different users, and it has been
proven to effectively improve the quality of ranking [6]. The key
to personalization is how to accurately capture user preferences by
analyzing user historical queries and click information. Therefore,
a large number of methods for mining personalized information
from user query logs have been proposed.

Some early studies focused on the click-based features contained
in the query logs, which is accessible and reliable for predicting

user preferences. Dou et al. [11] proposed the P-Click model to
predict the probability of clicking by counting the number of histor-
ical clicks. The similar approach was used in [31] to figure out the
personal navigation for personalizing search results. In addition,
some studies attempt to analyze the topic features of documents to
build user models. The Open Directory Project (ODP) was widely
used to represent the topic of a web page [3, 27, 37]. Unfortunately,
this might lead to huge labor costs and incomplete categories. Later
works [7, 13, 34, 36] tried to learn the topic representations auto-
matically and learned a latent user preference vector, which showed
superiority over previous methods. In particular, most of these stud-
ies point out that personalization strategies are not suitable for all
queries, and usually have a distinct advantage on ambiguous queries.
Therefore, the click entropy [11] and the topic entropy [30] were
proposed to measure the ambiguity of a query. The emergence of
the learning to rank method allows us to combine multiple person-
alized features in a non-linear manner. Previous studies [4, 33, 37]
made great success in training ranking model with the advanced
ranking algorithm LambdaMART [39].

Deep learning is widely used in various fields due to its powerful
representation learning capabilities. For personalized search, it
is a great tool for discovering potential user preferences. Song
et al. [29] leveraged individual information to adapt the general
ranking model. Li et al. [17] expected to improve the results with
the employment of semantic features of in-session contexts. Ge
et al. [12] proposed hierarchical recurrent neural networks with
query-aware attention to model the sequential information and to
eliminate the irrelevant interests. Lu et al. [18] proposed PSGAN
framework, which is based on generative adversarial network to
generate high quality negative examples for training. Different from
these user profile based studies, we focus on encoding user’s search
history as context to enhance the query representation.

2.2 Context-aware document ranking
Recently, context-aware language models have made impressive
progress on various natural language processing tasks, such as
ELMo [24] and BERT [10]. These studies have proven to be ef-
fective in representing sentences without ambiguity, which is a
key point of the document ranking task. Prior work has indicated
that combining contextual information can better represent queries
and documents for ranking. Dai et al. [9] devised conv-KNRM
model, using convolutional neural network to learn context-aware
word representations. Mcdonald et al. [20] applied the recurrent
neural network to model sequential information in query terms.
Ahmad et al. [2] presented the CARS, a context attentive document
ranking and query suggestion model. They leveraged recurrent
neural network to encode the contextual information and to exploit
users’ on-task search activities. Due to the stronger ability of the
transformer [32] to extract latent features, more transformer-based
methods were proposed to aggregate context. [22, 41, 42] used BERT
sentence classification to predict the relevance of query-document
pairs. MacAvaney et al. [19] combined the existing neural rank-
ing model with BERT’s term representations and achieved higher
precision. Similarly, we intend to learn the context-aware query
representation with transformer for personalized search.

Session 6C: Context-aware Modeling SIGIR ’20, July 25–30, 2020, Virtual Event, China

1112

3 HTPS: THE PROPOSED MODEL
Personalized search plays an important role in capturing users’
real intents, which can potentially improve the search results to
meet individuals’ needs. As we stated in Section 1, most of exist-
ing personalized methods tailor the results based on building user
profiles. This way of modeling user interests still retains the static
representation of the current query, which might be ambiguous. In
this paper, we propose to learn the context-aware representation
of the current query, which can be regarded as user’s real intent
directly. Specifically, endowed with rich contextual information
hidden in query terms, short-term history and long-term history, a
query disambiguation model is constructed to parse the meaning of
current query in multiple stages. Furthermore, in order to cover the
case of misspelling and misrepresenting, we build a personalized
language model to help understand user intents.

To start with, the problem can be defined as follows. Suppose
that for a user, his historical data H consists of the short-term
history H s and the long-term history H l . The former includes a
series of queries and candidate documents in the current session,
H s = {{qs1,D

s
1}, ..., {q

s
t−1,D

s
t−1}}, where t is the current timestamp.

The latter contains user past interactions in previous sessions,H l =

{{ql1,D
l
1}, ..., {q

l
n,D

l
n }}, where n is the number of queries issued in

previous sessions. Given a new query q and candidate documents
D = {d1,d2, ...} returned by the search engine, our task is to score
each element in D based on the current query q and the historical
data H . The score of the document d is denoted as p(d |q,H).

Different from previous user profile based methods, which focus
on extracting personalized features from the historical data H , we
attempt to enhance the representation of the current query q based
on it. The personalized search results are generated according to
the matching scores of refined query representation qH and each
candidate document. The final score can be computed as:

p(d |q,H) = ϕ(p(d,q),p(d,qH)), (1)

where p(d,q) is the adhoc relevance between the document and
the query. And p(d,qH) represents the personalized relevance with
respect to the context-aware query representation enhanced by the
historical data. The function ϕ(·) is the multilayer perceptron (MLP)
with tanh(·) as the activation function, which is used to combine
the score of each part with different weights. In the remaining of
the section, we will introduce the refining process in detail.

3.1 Multi-stage Query Disambiguation
As we discussed in Section 1, a large part of queries user issued are
ambiguous. This hinders us from understanding the real intents of
users and returning a list of documents they are satisfied with. To
solve this problem intuitively, we intend to build amulti-stage query
disambiguation model which integrates the query terms, short-
term history, and long-term history respectively. A hierarchical
transformer structure is applied to encode them as context for
clarifying the meaning of current query. Specifically, we divide the
whole process into (1) word-level disambiguation, which considers
the effect of surrounding terms; (2) short-term disambiguation,
which regards the user interactions in short-term history as the
context; (3) long-term disambiguation, which uses the context of
user interactions in long-term history. The structure of the query

Current query

e1 e2 em

Word-level Trm

···

Short-term Transformer

Long-term Transformer

···

··· Word-level TransformerWord-level TransformerWord-level Transformer

Short-term History

Long-term History

𝑞𝑤𝑞𝑤

𝑞𝑠

𝑞𝑙

Multi-head

Self-attention

Dropout

Add & Norm

Position-wise

Feed-forward

Dropout

Add & Norm

Word-level Transformer

···

𝑞1
𝑠

[SEP]

···

𝐷1
𝑠

Word-level Transformer

···

𝑞𝑡−1
𝑠

[SEP]

···

𝐷𝑡−1
𝑠

···

𝑞1
𝑙 [SEP]

···

𝐷1
𝑙

···

𝑞2
𝑙 [SEP]

···

𝐷2
𝑙

···

𝑞𝑛
𝑙 [SEP]

···

𝐷𝑛
𝑙

Transformer

Multi-stage

disambiguation

Short-term

identifier

Long-term

identifier

Figure 1: The architecture of the query disambiguation
model. Given a newquery, we encode the query terms, short-
term history, and long-term history as contextual infor-
mation separately with hierarchical transformer to disam-
biguate the current query .

disambiguation model is shown in Figure 1. We will elaborate on
the role of each stage and how to achieve it in the following.

3.1.1 Word-level disambiguation. For vague words in ambiguous
queries, the context of surrounding words provides an opportunity
to capture the true meaning of them and further understand the
query intent. For example, the word "apple" has different meanings
in the query "apple fruit" and "apple company" because of different
context. Instead of pre-trained word vectors, we hold the idea that
even the same word should be represented by different vectors in
different contexts.

For the current query q, suppose it consists ofm terms, denoted
as q = {e1, e2, ..., em }. We aim to learn the context-aware represen-
tation of each term with the word-level transformer based on the
entire text, denoted as:

Ew = Trm(q + qp), (2)

where q ∈ Rm∗d and qp ∈ Rm∗d are the word embeddings and
the position embeddings of the terms in query q. And Trm(·) is
a transformer layer following [32], containing a Multi-head Self-
attention (MS) layer and a Position-wise Feed-forward (PF) layer.
To prevent difficult training as the network goes deeper, we apply
residual connections to each layer.

Trm(q) = LN(Mq + D(PF(Mq))),

Mq = LN(q + D(MS(q))),

where LN(·) is layer normalization to stabilize the output. And
D(·) is a dropout layer with 0.1 probability in our settings. The
multi-head self-attention has been shown to perform better than
traditional attention mechanism due to its ability to apply weights
with different focuses [32]. Specifically, it projects the inputs into h
subspaces with different parameters firstly, and employ the single
attention (Att) for each head. The final output is generated by

Session 6C: Context-aware Modeling SIGIR ’20, July 25–30, 2020, Virtual Event, China

1113

concatenating them.

MS(q) = [head1, ...,headh]W
O ,

headi = Att(qWQ
i ,qW

K
i ,qW

V
i),

Att(Q,K,V) = softmax
(
QKT√
d/h

)
V ,

where the projection matrices of each headWQ
i ∈ Rd∗d/h ,W K

i ∈

Rd∗d/h ,WV
i ∈ Rd∗d/h , andWO ∈ Rd∗d are parameters learned

during the training. To endow the model with interactions between
different dimensions, we add a position-wise feed-forward network
to enhance the representationwith nonlinear projections. It consists
of two convolutions with kernel size 1. We have:

PN(x) = C2(ReLU(C1(x
T)))T ,

where C1(·) and C2(·) are two convolutions with different parame-
ters, and they are shared across all positions. Finally, the outputs of
transformer layer in Eq. (2) are viewed as the context-aware repre-
sentations of terms in the current query, i.e. Ew = {ew1 , e

w
2 , ..., e

w
m }.

To reduce downstream computational costs, we represent the query
with word-level disambiguation qw by summing its terms, i.e.,

qw =
m∑
i=1

ewi .

For cover more cases, we will continue to disambiguate the current
query with qw as the input for the next stage.

3.1.2 Short-term disambiguation. As we have discussed in Section
1, the queries issued by users are often very short, even one word.
In such a case, word-level disambiguation can not completely elim-
inate the polysemy. There is a common scenario that users often
present a series of queries in a session for a single information need.
The queries and click data during this process provide rich context
information to deduce the current user intent. Therefore, we intend
to further disambiguate the current query by incorporating the
context of short-term history.

Formally, for each query in short-term history H s , we join the
query terms with its satisfied documents, with "[SEP]" as the sepa-
rator. After the word-level disambiguation, we take the output hsi

w

as contextual information for the current query. All of the outputs
form the short-term context, denoted as H sw = {hs1

w , ...,hst−1
w }.

We concatenateH sw with qw and apply the short-term transformer
to get the refined representation qs .

qs = Trmlast ([H sw ,qw] + [H sw ,qw]p+),

where Trmlast (·) means merely taking the output of the last posi-
tion, which corresponds to the current query. The position embed-
ding p+ here not only encodes the relative position in the sequence,
but also considers the hierarchical information. The basic idea is
that the short-term history is closer in absolute position and should
be paid more attention to than the long-term history. Thus, we add
an identifier to distinguish whether the current context belongs to
short-term (marked as 2) or long-term history (marked as 1), and
embed it in the same way as position embedding. The output qs
will be further refined in the next stage.

3.1.3 Long-term disambiguation. After the above two steps, the
intents of some queries has been accurately represented. But for
the short queries at the beginning of the session, they are still
biased for lack of context. Long-term history often reflects users’
stable and solidified interests, which also provide a way to infer
user intents based on the current query. Thus, we encode the long-
term history as context for further disambiguation. Similar to the
short-term disambiguation, after word-level disambiguation for
each item in H l , we put the output vectors H l w = {hl1

w
, ...,hln

w
}

and qs together as the input of the long-term transformer. And
the output of the last position ql is considered as the new query
representation enhanced by the long-term history, computed as:

ql = Trmlast ([H l w ,qs] + [H l w ,qs]p+).

Finally, we have encoded the history as context to disambiguate
the current query multiple times. The context-aware representation
at each stage qw , qs , and ql will contribute to the final matching.
However, they are not enough to accurately express the user in-
tent in some cases. We will introduce the limitations of the query
disambiguation model and how to get over it in the next part.

3.2 Personalized language model
The premise that the query disambiguation model we proposed
above can work is that the user’s real intent is hidden in the current
query, and we can strip it out step by step. However, sometimes
there is a deviation between the issued query and real information
needs. For instance, a user wants to find the detailed information of
a medicine (assuming aspirin), but he forgets the name of it. In such
a case, he might searched by "a common antiphlogistic medicine"
(deviating expression), or a guessed name "asp.." (misspelling). These
queries do not contain ambiguous terms and they are difficult to
be refined by simple disambiguation. Thus, as shown in Figure 2,
we aim to establish a personalized language model to predict the
user’s real intent.

Looking at the entire query logs, the same search pattern often
appears multiple times. In other words, a series of inaccurate queries
in a session can also reflect a specific information need, which will
help understand the user intent when the search engine meets them
again. Our goal is to learn such a search pattern and to predict the
user intent based on existing queries. There are two steps in this
process which will be introduced as follows.

3.2.1 Modeling the current search pattern. Given the set of issued
queries in the current session, Qs = {qs1, ...,q

s
t−1,q}, we intend to

use the similar search patterns in the long-term history to enhance
the query representations of Qs . We denote the set of historical
queries in long-term history as Ql = {ql1, ...,q

l
n }, each query is

represented by averaging the vector of each word. In particular, to
segment the search patterns, we add the "[SEP]" token to session
boundaries, and encode the session ID into the query embedding.
The series of queries with the same ID can reflect a single informa-
tion need. Finally, we concatenate the queries in previous sessions
Ql and the queries in current session Qs , and apply a low-level
transformer to model the search pattern of current session.

Qs l = Trm([Ql ,Qs] + [Ql ,Qs]p + [Q
l ,Qs]s).

Session 6C: Context-aware Modeling SIGIR ’20, July 25–30, 2020, Virtual Event, China

1114

Previous sessions Current session

𝑞1
𝑙 𝑞𝑛

𝑙 𝑞1
𝑠 𝑞𝑡−1

𝑠 𝑞[SEP] [SEP]

···

Low-level Transformer

[MASK]
Session

boundary

Query

Position

Session

···

···

+

+

+

+

+

+

+

+

+

+

+

+

+

+

High-level Transformer

+

+

𝑞𝑝

Query

disambiguation

model

𝑞𝑙

𝑞𝑓

xGated joint

···

···

···

···

···

···

Predicted intent

Disambiguation query

Figure 2: The architecture of the personalized language
model, which is used to learn the user’s personalized search
pattern. We first enhance the queries in the current session
based on historical patterns, and then summarize them to
predict the current intent. Finally, we combine two models
with a gate unit.

where [Ql ,Qs]s is the encoding of the session ID. And the output
set Qs l are refined representations of Qs which incorporates the
personalized search patterns. It will contribute to the prediction of
user’s real intent in the next.

3.2.2 Predicting the real intent. Now that we have enhanced the
query representations of the current session based on the user’s
personalized search patterns, we attempt to predict the real intent
based on them with a high-level transformer. Specifically, we add a
"[MASK]" token at the last position in the sequenceQs l and regard
its output qp as the predicted intent.

qp = Trmlast
([
Qs l , [MASK]

]
+

[
Qs l , [MASK]

]
p

)
.

The predicted intent qp summarizes all existing queries and infers
the most likely intent at the current time. For better optimizing
this model, we choose the next query to supervise the predictions,
which will be demonstrated in Section 3.5.

3.3 Gated Joint of Two Models
The disambiguated representation ql and the estimated user intent
qp are both significant references for inferring the user’s infor-
mation need. We believe that they contribute differently under
different conditions, and their weights should be dynamically ad-
justed as the issued query changes. In order to automatically learn
the contribution of the two sub-models to the final results, we de-
vise a gate unit to control the flow of both parts. Formally, the final
representation of the current query qf is generated by aggregating
the ql and qp with the gate weight z:

qf = z ∗ ql + (1 − z) ∗ qp ,

where z is learned according to the characteristic of current query
and the two parts by MLP. Note that in order to make z between 0
and 1, the activation function here is sigmoid(·).

z = ϕ
(
[q,qp ,ql]

)
.

The final representation qf combines the information of query
disambiguation model and personalized language model, and it acts
on computing the matching score to re-rank the results.

3.4 Re-ranking Search Results
Finally, the final score of each candidate document can be calculated
by the context-aware query representations collected above. For a
wider range of matching, we apply the word-level disambiguation
to the candidate document and the output vector is denoted as
dw , which is the context-aware representation of d . Next we will
introduce the computing method of each part in Eq. (1) in detail.

For the personalized relevance p(d,qH), we collect the refined
query representations enhanced by history at each stage, including
(1) the query with short-term and long-term disambiguation qs and
ql in Section 3.1, (2) the predicted user intent qp in Section 3.2, and
(3) the final representation qf in Section 3.3. For covering queries
with varying degrees of ambiguity semantic deviation, we match
them all to the document dw and automatically adjust the weights
for each part using MLP. We have:

p(d,qH) = ϕ
(
sR (qs ,dw), sR (ql ,dw), sR (qp ,dw), sR (qf ,dw)

)
,

where sR (·) means the representation based similarity. It is imple-
mented as the cosine similarity in this paper.

For the adhoc relevance p(d,q), we consider the matching of
the original query and document terms, and their refined repre-
sentations qw and dw . Moreover, following [4], we extract several
additional features Fq,d for each document about the clicks and
topic. These features are fed into MLP to compute a relevant score.
Formally, the adhoc relevance consists of three parts:

p(d,q) = ϕ
(
s I (q,d), sR (qw ,dw),ϕ(Fq,d)

)
,

where s I (·) is the interaction based similarity. We follow the KNRM
model proposed by [40] to implement such an interactive match.
Given a query-document pair, we construct an interaction matrixM
by cosine similarity between each term in query and document. And
then we apply k kernels to handle the different ranges of matching.
The final matching score Fk (M) is generated by aggregating them
with MLP:

Fk (M) = ϕ (f1 (M) , f2 (M) , ..., fk (M)) ,

fk (M) =
∑
i
log ©«

∑
j
exp

(
−
(Mi j − µk)

2

2σ 2
k

)ª®¬ ,
where µk is distributed in -1 and 1 according to the number of
kernels, and σk is set to 0.1. Finally, by re-ranking the results based
on the final relevance score, we obtain the personalized search
results with respect to the user’s information need.

3.5 Training and Optimization
In this section, we will introduce how to train the model and op-
timize the parameters. Aside from tuning the ranking model that
directly contribute to the personalized results, we devise the loss
of the predicted user intent from the personalized language model
to further improve the results.

Ranking loss. We adopt the LambdaRank algorithm [5] to train
the ranking model in a pairwise manner. Each pair is constructed

Session 6C: Context-aware Modeling SIGIR ’20, July 25–30, 2020, Virtual Event, China

1115

Table 1: Basic statistics of the datasets.

Type AOL dataset B dataset
#days 91 58
#users 110,439 33,204
#queries 736,454 2,665,625
#sessions 279,930 654,776
Average query length 2.87 3.25
Average session length 2.55 2.63
Average #click per query 1.11 0.46

with a positive sample (clicked document) and a negative sample
(unclicked document). Our goal is to maximize the gap between
the scores of them. Formally, given a positive document di and
a negative document dj , the predicted probability that di is more
relevant than dj is computed by p(di |q,H)−p(dj |q,H)with sigmoid
normalization. The loss function of ranking model is computed by
the weighted cross entropy between the true lable pi j and the
predicted probability pi j :

Lrank = −|λi j |
(
pi j loд(pi j) + p ji loд(pji)

)
,

where the weight λi j corresponds to the change of ranking quality
when swapping the position of di and dj .

Prediction loss. To further optimize the parameters, we take
additional supervised information into account so as to train the
personalized language model more finely. Based on the assumption
that the next query in the session expresses the real intent more
accurately than previous queries, we regard the next query as the
supervision to optimize the model. In other word, we are convinced
that the predicted user intent based on existing queries should be
close to the next query. Thus, the loss between the predicted user
intent qp and the next query qt+1 is:

Lpred = 1 − sim(qp ,qt+1),

where qt+1 refers to the average vector of each word in the next
query, and sim(·) is cosine similarity. Note that if the current query
is the last one of the session, the target query is still itself.

Finally, weminimize the ranking loss and prediction loss together
to update the parameters in the model:

L = Lrank + αLpred .

where α is a hyper-parameter to control the balance. We adopt the
Adam optimizer to minimize the final loss L.

4 EXPERIMENTAL SETUP
4.1 Dataset
We conduct our experiments on AOL search log [23] and the dataset
from a commercial search engine (written as "B dataset" in the
following). The basic statistics are shown in Table 1.

AOL dataset contains three months of user click data. Since this
dataset only has the clicked documents, following [1], the candidate
documents are selected from the top documents ranked by BM25
algorithm [26]. We also follow the method used in [1] to split log
into sessions: the boundaries are identified based on the similarity
between two consecutive queries. Each piece of data includes a
user ID (anonymous), a session ID, a query, a document, and a

click tag. Since the basis for personalized search is user historical
information, we divide the whole dataset into historical data and
experimental data. The former is regarded as the basic context
contributing to the user’s current information need, which contains
the first five weeks data. The last eight weeks data is considered
as experimental data, which is divided into training set, validation
set and test set in a 6:1:1 ratio. Following [2, 14], we sample 50
candidate documents per query in the test set, and 5 candidates
per query for training and validation. We simply use the document
title to compute the relevance. To ensure the validity of the data,
we remove users whose historical data or training set is empty.

B dataset contains two months of query logs in 2013, when per-
sonalization support was not applied. Different from AOL dataset,
the candidate documents in this dataset are directly returned by
the search engine. We use 30 minutes of inactivity as the basis for
segmenting sessions following [38]. For dataset partitioning, the
first six weeks is regarded as the historical data and the last two
weeks is used to experiment. Since this dataset contains informa-
tion on click dwell time, we consider clicks with a dwell time more
than 30s or the last one in the session to be the satisfied click.

4.2 Baselines
We compare our model with adhoc search models, session search
models and previous personalized search models. The original rank-
ing and the baseline models are set as follows:

Ori. [26]. For AOL dataset, following [1], we take the ranking
retrieved by BM25 algorithm as a basic baseline. For B dataset, we
take its original ranking as the basic baseline directly.

KNRM [40]. It is a neural ranking model which extracts the
features of interaction between query and document terms. The
kernel-pooling is used to provide soft match signals for ranking.

Conv-KNRM [9]. This model is an upgrade of the KNRMmodel,
which adds a convolutional layer for modeling n-gram soft matches.
It fuses contextual information of surrounding words and learns
context-aware word embeddings for matching.

BERT (Rep) [25]. It represents the query and document with
the pre-trained BERT model separately, and computes the cosine
similarity of them as the relevance score.

BERT (Last) [25]. This model works on the concatenated query-
document sequence. It provides a "[CLS]" token at the start of the
sequence and a "[SEP]" token as the joiner, and feeds them into
the pre-trained BERT model. We take the last layer’s "[CLS]" as the
matching features and combine them linearly.

CARS [2]. It is a context-aware neural ranking model, which
exploits the search activities in current session to model the user
intent. Document ranking task and query suggestion task are en-
hanced by rich context and the whole framework is optimized
via multi-task learning. We replace its GloVe word vectors with
word2vec for a fair comparison with others.

P-Click [11]. This personalized search model uses the feature
of click number on the same document and original position to re-
rank the results via borda count. It focuses on the user’s re-finding
behavior and is reliable for improving results.

SLTB [4]. This method aggregates the click features, topical
features, time features and position features to personalize the
results via learning to rank method.

Session 6C: Context-aware Modeling SIGIR ’20, July 25–30, 2020, Virtual Event, China

1116

Table 2: Overall performance of all models on AOL and B dataset. The percentage reflects improvements over PSGAN. "†"
indicates the model outperforms all baselines significantly with paired t-test at p < 0.05 level. Best results are shown in bold.

Task Model AOL dataset B dataset
MAP MRR P@1 MAP MRR P@1 P-improve

Adhoc
Search

No context
Ori. .250 -54.4% .258 -53.9% .148 -69.7% .740 -9.1% .751 -8.8% .616 -14.1% - -
KNRM .429 -21.7% .439 -21.6% .271 -44.6% .492 -39.4% .500 -39.2% .285 -60.3% .066 -73.5%
Word-based Context
Conv-KNRM .474 -13.5% .485 -13.3% .327 -33.1% .587 -27.7% .598 -27,3% .419 -41.6% .142 -43.0%
BERT (Rep) .112 -79.6% .117 -79.2% .030 -93.9% .201 -75.2% .214 -74.0% .082 -88.6% .011 -95.5%
BERT (Last) .483 -11.9% .493 -12.0% .335 -31.5% .573 -29.4% .582 -29.3% .397 -44.6% .137 -45.0%

Session
Search

Short-term Context
CARS .494 -9.8% .503 -10.2% .352 -28.0% .602 25.9% .606 -26.4% .426 -40.6% .182 -26.9%

Personalized
Search

User profile based Methods
P-Click .422 -22.9% .430 -23.3% .379 -22.6% .750 -7.7% .763 -7.3% .626 -12.8% .061 -75.5%
SLTB .507 -7.5% .519 -7.3% .466 -4.8% .792 -2.6% .800 -2.8% .690 -3.8% .117 -53.0%
HRNN .542 -1.0% .555 -1.0% .485 -0.8% .805 -0.9% .819 -0.5% .713 -0.7% .240 -3.4%
PSGAN .548 - .560 - .489 - .812 - .823 - .717 - .249 -
Our Context-aware Methods
HTPS (static) .672† +22.6% .686† +22.5% .593† +21.2% .818† +0.6% .830† +0.8% .724† +0.9% .252† +1.1%
HTPS .709† +31.1% .723† +29.1% .627† +28.1% .822† +1.0% .832† +1.1% .729† +1.6% .255† +2.4%

HRNN [12]. This study uses a hierarchical recurrent neural
network with query-aware attention model to build the user profile.
It focuses on the sequential information hidden in query logs and
dynamically adjusts the user profile based on the current query.

PSGAN [18]. It is a personalized framework based on generative
adversarial network, whose aim is to extract high quality negative
examples from noisy data to train the model. In our experiment, con-
sidering the cost of training, we implement the document selection
based model and take the discriminator as the ranker.

The first two models have no contextual information while the
next three methods utilize the word-level context to learn the word
embedding. CARS takes account of the context of current session
to model the query intent. The last four models are personalized
approaches incorporating the influence of long-term history, but
they focus more on building user profiles based on the history.

For our context-aware method, we initialize the word embedding
matrix with the pre-trained vectors and fine-tune it during the
training. Since the previous work [25] has revealed that BERT is not
suggested to be used as a representation model, we train a word2vec
[21] model to represent the query and document following [12, 18].
Specifically, our models we will experiment with are:

HTPS (Hierarchical Transformer for Personalized Search). This
is the whole framework proposed in Section 3.

HTPS (static). Since the word embedding matrix of previous
personalization methods [12, 18] are fixed, for fair comparison, this
model keeps static word vectors without fine-tuning.

To determine the parameters of the model, we conducted multi-
ple sets of experiments. The final parameters are selected as follows.
The word embedding size is 100. The hidden size of transformer is
512. The number of heads in multi-head self-attention is 8. The num-
ber of MLP hidden units is 256. The number of kernels in matching
is 11. The balance factor α is 0.5. The learning rate is 1e−3.

4.3 Evaluation Metrics
Suppose that the clicked documents for AOL dataset and the satis-
fied clicked documents for B dataset are relevant, and the others
are irrelevant, we choose three common metrics to measure the
ranking quality to evaluate the performance of different models:
mean average precise(MAP), mean reciprocal rank (MRR), and pre-
cision@1 (P@1). Moreover, we form the inverse document pairs
following [12, 18] to measure reliable improvements in re-ranking.
The basic reason is that a relevant document may also be ignored
because of a lower position [15]. To eliminate the effect of position
bias, we take the percentage of improvement on inverse pairs P-
improve to evaluate the results. Since the original ranking of AOL
dataset is not retrieved by the search engine directly, the results on
P-improve over BM25 is unreliable. So we only test this metric on
B dataset, which reflects the user’s click behavior in real situations.

5 RESULTS AND ANALYSIS
5.1 Overall Performance Comparison
The overall results on two datasets are reported in Table 2. It can
be observed that:

(1) The comparison of user profile based personalized search
methods and our context-aware methods. Our proposed methods
HTPS and HTPS (fix) outperform all previous personalized search
models on both datasets. Compared with the best personalized
baseline model PSGAN, our models have significant improvements
in all evaluation metrics with paired t-test at p < 0.05 level. Con-
cretely, for AOL dataset, HTPS outperforms PSGAN by over 31.1%
improvement on MAP, while the improvement percentage is 1.0%
for B dataset. The reason for improvement reduction is that the B
dataset has a much higher quality of original ranking than AOL
dataset. It is hard to improve the results on such a baseline, so that
the metric P-improve is more convincing on which our model HTPS

Session 6C: Context-aware Modeling SIGIR ’20, July 25–30, 2020, Virtual Event, China

1117

Table 3: Performance of ablation models on AOL dataset.

Model MAP MRR P@1
w/o. QDM .686 -3.24% .699 -3.32% .600 -4.31%
w/o. PLM .697 -1.69% .711 -1.66% .615 -1.91%
w/o. GT .706 -0.42% .720 -0.42% .623 -0.64%
w/o. PL .705 -0.56% .719 -0.55% .622 -0.80%
HTPS .709 - .723 - .627 -

increases by 2.4% over PSGAN. These results prove that encoding
user’s search history as context to enhance the representation of
the current query is more effective than building user profiles.

(2) The comparison of different context-aware methods. A discov-
ery from the results of models with word-based context, short-term
context and our context methods is that more contextual infor-
mation is conducive to learn the context-aware word (or query)
representations more accurately for document ranking. Specifically,
our complete context-aware method HTPS, which aggregates the
influence of long-term history, has significant improvements over
CARS. An interesting phenomenon is that the model BERT (last)
achieves the best results in adhoc search, whereas the performance
of model BERT (Rep) is close to random. A possible reason is that
BERT (Rep) discards the cross sequence interactions and the BERT
model is more suitable for interactive learning.

(3) The comparison of HTPS (fix) and HTPS. The model HTPS
(fix) outperforms the baseline models with the fixed word embed-
ding matrix HRNN and PSGAN on both datasets. This illustrates
that the structure of our context-aware model is effective for search
results personalization. As we fine-tune the word vectors, the model
HTPS further improves the quality of re-ranking. This indicates
that trainable word vectors are useful in refining the representation
of the current query.

(4) The comparison of different search tasks. Deep learning based
personalized search methods outperform the session search and
adhoc search baselines, which proves the contribution of long-term
history. Specifically, we find that the improvement on the metric
P@1 is more obvious than the other metrics. A possible reason is
that long-term history provides strong support for the re-finding
behavior. It is easy to deduce the user intent of repeated queries but
is difficult for new queries that lack relevant history. Additionally,
some adhoc and the session search models have better performance
than the feature-based personalized methods P-Click, which shows
the advantages of deep learning in semantic representation.

In summary, the experimental results prove that encodinguser’s
search history with context-aware representation learning,
which is implemented by hierarchical transformer, is con-
ducive to refinement of the current query’s representation
and search results personalization. For more detailed analysis
of the model, we conduct the following supplementary experiments:
the ablation analysis, effect of short-term and long-term history,
and performance on different query sets. For convenience, these
experiments are performed on AOL dataset.

5.2 Ablation Analysis
To prove the effectiveness of main components in the model HTPS,
we conduct ablation studies on the query disambiguation model,
the personalized language model, the gated joint and the prediction

loss on AOL dataset. Specifically, we remove one component at a
time for performance comparison in the following.

HTPSw/o. QDM. We abandon the query disambiguation model
(QDM) and take the predicted user intent from personalized lan-
guage model to compute the personalized score.

HTPS w/o. PLM. We discard the personalized language model
(PLM) and match the document to the refined queries from multi-
stage disambiguation.

HTPS w/o. GJ. We replace the gated joint of the two models
with adding their outputs directly.

HTPS w/o. PL. We remove the prediction loss and optimize the
model only depending on the ranking loss.

The ablation results are shown in Table 3. It can be seen that
the results of four ablation strategies underperform the whole
framework. Specifically, removing the query disambiguation model
causes the most decline on MAP, which confirms the necessity and
contribution of it on refining the representation of current query.
The damage to the results caused by discarding the personalized
language model shows that the predicted user intent contributes to
the further enhancement of the query representation. Furthermore,
the contributions of gated joint and prediction loss are less than the
two sub-models, but still have a certain impact on the results. This
proves the effectiveness of the interaction of the two sub-models and
the additional supervision information on PLM. However, even if
one component is removed, the gap between our model and PSGAN
is still large. In addition to the effect of fine-tuning word embedding
matrix, another possible reason is that user profile based personal-
ized approaches ignore the interaction of queries and documents at
the word-level. Our model applies the interaction-based matching
and word-level disambiguation to capture the dependencies among
terms. These results prove the necessity of each component in our
model, especially the two sub-models.

5.3 Effect of Short-term and Long-term History
We previously discussed the contribution of main components in
HTPS. To explore the impact of different histories, we keep one of
the short-term history and long-term history at a time for exper-
iments. Concretely, we set the HTPS-S model to test the effect of
short-term history, which eliminates the long-term disambiguation
stage in query disambiguation model and the low-level transformer
in personalized language model. Similarly, the model that only
retains the long-term history is called HTPS-L. It discards the short-
term disambiguation and high-level transformer, and regards the
current query as the first one of the session. Meanwhile, to delve
deeper into the impact of different histories, we perform this exper-
iment on the two sub-models QDM and PLM.

As shown in Table 4, removing either the short-term history
or long-term history can considerably reduce the results. And the
decline of abandoning long-term history is more obvious, which
indicates that the long-term history can provide more contextual
information for the moment than the short-term. Comparing the
two sub-models, we find that QDM-L and PLM-L have similar
declines without short-term history. But discarding the long-term
history causes more damage on PLM. A possible reason is that PLM
relies more on long-term history to find the personalized search
patterns. Furthermore, HTPS-S, which can be seen as a session

Session 6C: Context-aware Modeling SIGIR ’20, July 25–30, 2020, Virtual Event, China

1118

0-1 ≥1
Click Entropy

0.0

0.1

0.2

0.3

0.4

ΔM
AP

KNRM
SLTB
PSGAN

w/o. QDM
HTPS

(a) Click entropy study

Correct queries Misspelling queries
Query Category

0.0

0.1

0.2

0.3

0.4

ΔM
AP

KNRM
SLTB
PSGAN
w/o. PLM
HTPS

(b) Spelling study

Non-repeated queries Repeated queries
Query Category

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ΔM
AP

SLTB
PSGAN
PLM

QDM
HTPS

(c) Re-finding study

Figure 3: The results on different query sets on AOL dataset

Table 4: Effect of different histories on AOL dataset.

Model MAP MRR P@1
The whole framework
HTPS-L .658 -7.20% .671 -7.19% .564 -10.05%
HTPS-S .628 -11.42% .641 -11.34% .521 -16.91%
HTPS .709 - .723 - .627 -
Query disambiguation model
QDM-L .653 -6.31% .669 -6.04% .560 -8.94%
QDM-S .625 -10.33% .638 -10.40% .520 -15.45%
QDM .697 - .712 - .615 -
Personalized language model
PLM-L .641 -6.56% .655 -6.29% .547 -8.83%
PLM-S .606 -11.66% .618 -11.44% .493 -17.83%
PLM .686 - .699 - .600 -

search model, outperforms the baseline model CARS. This confirms
the effectiveness of our transformer-based structure to model the
user’s information need.

5.4 Performance on Different Query Sets
For proving the main contribution of our model, we divide the
queries in the test set into two subsets based on three different
scenarios, including whether the query is ambiguous, misspelled
or repeated. We test the performance of models on different query
sets on AOL dataset in the following.

Ambiguous and non-ambiguous queries. We first categorize
the test query sets into ambiguous and non-ambiguous queries.
The former usually refers to queries that can be interpreted into
multiple meanings, such as "Apple". The latter are queries with
clear intents and their meanings are identical for different users.
We take the click entropy [11] to measure query ambiguity and
divide the queries with the threshold at 1.0. Larger click entropy
means greater ambiguity and more potential for personalization.
We choose baseline models KNRM, SLTB, PSGAN and our model
HTPS w/o. QDM, HTPS to compare. Here we use the improvement
of MAP over BM25 to show the performance.

From Figure 3(a), we observe that KNRMhas a relatively balanced
effect on the two sets. And personalizedmodels improvemuchmore
on non-ambiguous queries, which is inconsistent with the conclu-
sion in [12, 18]. The most likely reason is that the improvements is

based on BM25 ranking, which can’t even return satisfied results for
navigational queries (lower click entropy). Compared with the best
baseline model PSGAN, our models performs better on both sides,
and contributes more on ambiguous queries (larger click entropy).
This confirms the ability of our model to disambiguate queries. In
addition, if we remove the query disambiguation model, there is
a noticeable drop in performance on ambiguous queries. This is
consistent with our goal of designing this sub-model.

Misspelling and correct spelling queries. Next we categorize
the test query sets based on the query spelling. According to our
statistics, about 27.8% of issued queries are misspelled. Interpreting
the intent of these queries is hard on account of their wrong seman-
tics. It is worthwhile to test our framework on these misspelling
queries. We apply a spelling checker called enchant to divide the
queries. Besides the same three baseline models as above, we choose
our model HTPS w/o. PLM, HTPS here to compare.

As shown in Figure 3(b), the improvements of KNRM and SLTB
on correct spelling queries are larger than misspelling queries. The
deep learning-based personalized model PSGAN bridges the gap
between them, but they are still unbalanced. Our complete model
HTPS successfully make progress on both sets, especially on mis-
spelling queries. This fully illustrates the ability of our model to pre-
dict user intent when facing the queries that deviate from the true
information needs. It can be seen from the decline when discarding
the personalized language model that this sub-model contributes
more on misspelling queries.

Repeated and non-repeated queries. We finally categorize
the test query sets into repeated and non-repeated queries. For the
repeated queries, it is easy to infer user behaviors based on user
click data on the same queries in the past. But for the non-repeated
queries, there is a lack of information that can be directly referenced.
To progressively observe the effects of different models, we choose
the model SLTB, PSGAN and our context-aware models PLM, QDM,
and HTPS for experiments.

The results shown in Figure 3(c) indicate that all of the models
perform better on the repeated queries. The feature-based model
SLTB has little improvement on non-repeated queries. Endowed
with the benefit of deep learning, PSGAN enhances the personal-
ized results on this part. The effect of our context-aware models are
better than all baselines on both query sets, while the improvements
on the non-repeated queries are more obvious. This phenomenon

Session 6C: Context-aware Modeling SIGIR ’20, July 25–30, 2020, Virtual Event, China

1119

indicates that our models can make use of the contextual informa-
tion to infer the intent when the user submits a new query. Under
the interaction of the two sub-models, our complete model HTPS
achieves the best results on both query sets.

6 CONCLUSION
In this work, we propose the context-aware personalized model
HTPS which encodes user’s search history as contextual infor-
mation to enhance the query representation. Firstly, we design a
multi-stage query disambiguation model to parse the meaning of
the current query. To further supplement user’s information needs,
a personalized language model is constructed to predict user intent
based on existing queries. These two sub-models are implemented
by hierarchical transformer to encode rich contextual information.
After gated joint of them, we devise two loss functions to optimize
the whole framework. Experimental results confirm the effective-
ness of our model for personalized search.

ACKNOWLEDGMENTS
Zhicheng Dou is the corresponding author. This work was sup-
ported byNational Natural Science Foundation of ChinaNo. 61872370
andNo. 61832017, and Beijing Outstanding Young Scientist Program
NO. BJJWZYJH012019100020098.

REFERENCES
[1] Wasi Uddin Ahmad, Kai-Wei Chang, and Hongning Wang. 2018. Multi-task

learning for document ranking and query suggestion. (2018).
[2] Wasi Uddin Ahmad, Kai-Wei Chang, and Hongning Wang. 2019. Context Atten-

tive Document Ranking and Query Suggestion. arXiv preprint arXiv:1906.02329
(2019).

[3] Paul N Bennett, Krysta Svore, and Susan T Dumais. 2010. Classification-enhanced
ranking. In Proceedings of the WWW’2010. ACM, 111–120.

[4] Paul N Bennett, Ryen WWhite, Wei Chu, Susan T Dumais, Peter Bailey, Fedor
Borisyuk, and Xiaoyuan Cui. 2012. Modeling the impact of short-and long-
term behavior on search personalization. In Proceedings of the SIGIR’2012. ACM,
185–194.

[5] Christopher Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole
Hamilton, and Gregory N Hullender. 2005. Learning to rank using gradient
descent. In Proceedings of the 22nd International Conference on Machine learning
(ICML-05). 89–96.

[6] Fei Cai, Shangsong Liang, and Maarten De Rijke. 2014. Personalized document
re-ranking based on bayesian probabilistic matrix factorization. In Proceedings of
the SIGIR’2014. ACM, 835–838.

[7] Mark J. Carman, Fabio Crestani, Morgan Harvey, and Mark Baillie. 2010. To-
wards query log based personalization using topic models. In Proceedings of the
CIKM’2010. 1849–1852.

[8] Steve Cronen-Townsend and W Bruce Croft. 2002. Quantifying query ambi-
guity. In Proceedings of the second international conference on Human Language
Technology Research. Morgan Kaufmann Publishers Inc., 104–109.

[9] Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu. 2018. Convolutional
neural networks for soft-matching n-grams in ad-hoc search. In Proceedings of
the eleventh ACM international conference on web search and data mining. ACM,
126–134.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[11] Zhicheng Dou, Ruihua Song, and Ji-Rong Wen. 2007. A large-scale evaluation
and analysis of personalized search strategies. InWWW’2007. ACM, 581–590.

[12] Songwei Ge, Zhicheng Dou, Zhengbao Jiang, Jian-Yun Nie, and Ji-Rong Wen.
2018. Personalizing Search Results Using Hierarchical RNN with Query-aware
Attention. In Proceedings of the 27th ACM International Conference on Information
and Knowledge Management (CIKM ’18).

[13] Morgan Harvey, Fabio Crestani, and Mark J Carman. 2013. Building user profiles
from topic models for personalised search. In CIKM’2013. ACM, 2309–2314.

[14] Jizhou Huang, Wei Zhang, Yaming Sun, Haifeng Wang, and Ting Liu. 2018.
Improving Entity Recommendation with Search Log and Multi-Task Learning..
In IJCAI. 4107–4114.

[15] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay.
2005. Accurately interpreting clickthrough data as implicit feedback. In SI-
GIR’2005. 154–161.

[16] Lin Li, Zhenglu Yang, Botao Wang, and Masaru Kitsuregawa. 2007. Dynamic
adaptation strategies for long-term and short-term user profile to personalize
search. In Advances in Data and Web Management. Springer, 228–240.

[17] Xiujun Li, Chenlei Guo, Wei Chu, Ye-Yi Wang, and Jude Shavlik. 2014. Deep
learning powered in-session contextual ranking using clickthrough data. In
NIPS’2014.

[18] Shuqi Lu, Zhicheng Dou, Xu Jun, Jian-Yun Nie, and Ji-Rong Wen. 2019. PSGAN:
A Minimax Game for Personalized Search with Limited and Noisy Click Data.
In Proceedings of the 42Nd International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR’19).

[19] Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian. 2019. Cedr:
Contextualized embeddings for document ranking. In Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 1101–1104.

[20] Ryan McDonald, Georgios-Ioannis Brokos, and Ion Androutsopoulos. 2018. Deep
relevance ranking using enhanced document-query interactions. arXiv preprint
arXiv:1809.01682 (2018).

[21] Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013. Exploiting similarities
among languages for machine translation. arXiv preprint arXiv:1309.4168 (2013).

[22] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
arXiv preprint arXiv:1901.04085 (2019).

[23] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. 2006. A picture of search..
In InfoScale, Vol. 152. 1.

[24] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word
representations. arXiv preprint arXiv:1802.05365 (2018).

[25] Yifan Qiao, Chenyan Xiong, Zhenghao Liu, and Zhiyuan Liu. 2019. Understanding
the Behaviors of BERT in Ranking. arXiv preprint arXiv:1904.07531 (2019).

[26] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009), 333–389.

[27] Ahu Sieg, BamshadMobasher, and Robin Burke. 2007. Web search personalization
with ontological user profiles. In CIKM’2007. ACM, 525–534.

[28] Craig Silverstein, Hannes Marais, Monika Henzinger, and Michael Moricz. 1999.
Analysis of a very large web search engine query log. In ACm SIGIR Forum,
Vol. 33. ACM, 6–12.

[29] Yang Song, Hongning Wang, and Xiaodong He. 2014. Adapting deep ranknet for
personalized search. InWSDM’2014. ACM, 83–92.

[30] David Sontag, Kevyn Collins-Thompson, Paul N Bennett, Ryen W White, Susan
Dumais, and Bodo Billerbeck. 2012. Probabilistic models for personalizing web
search. In Proceedings of the fifth ACM international conference on Web search and
data mining. 433–442.

[31] Jaime Teevan, Daniel J Liebling, and Gayathri Ravichandran Geetha. 2011. Un-
derstanding and predicting personal navigation. InWSDM’2011. ACM, 85–94.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[33] Maksims Volkovs. 2015. Context models for web search personalization. arXiv
preprint arXiv:1502.00527 (2015).

[34] Thanh Vu, Dat Quoc Nguyen, Mark Johnson, Dawei Song, and Alistair Willis.
2017. Search personalization with embeddings. In ECIR’2017. Springer, 598–604.

[35] Thanh Vu, Dawei Song, Alistair Willis, Son Ngoc Tran, and Jingfei Li. 2014.
Improving search personalisation with dynamic group formation. In SIGIR’2014.
951–954.

[36] Thanh Vu, Alistair Willis, Son N Tran, and Dawei Song. 2015. Temporal latent
topic user profiles for search personalisation. In ECIR’2015. Springer, 605–616.

[37] Ryen W White, Wei Chu, Ahmed Hassan, Xiaodong He, Yang Song, and Hongn-
ing Wang. 2013. Enhancing personalized search by mining and modeling task
behavior. InWWW’2013. ACM, 1411–1420.

[38] Ryen W White and Steven M Drucker. 2007. Investigating behavioral variability
in web search. In Proceedings of the 16th international conference on World Wide
Web. ACM, 21–30.

[39] Qiang Wu, Chris JC Burges, Krysta M Svore, and Jianfeng Gao. 2008. Ranking,
boosting, and model adaptation. Tecnical Report. Technical Report. MSR-TR-2008-
109.

[40] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017.
End-to-end neural ad-hoc ranking with kernel pooling. In Proceedings of the 40th
International ACM SIGIR conference on research and development in information
retrieval. ACM, 55–64.

[41] Wei Yang, Haotian Zhang, and Jimmy Lin. 2019. Simple applications of bert for
ad hoc document retrieval. arXiv preprint arXiv:1903.10972 (2019).

[42] Zeynep Akkalyoncu Yilmaz, Wei Yang, Haotian Zhang, and Jimmy Lin. 2019.
Cross-domain modeling of sentence-level evidence for document retrieval. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). 3481–3487.

Session 6C: Context-aware Modeling SIGIR ’20, July 25–30, 2020, Virtual Event, China

1120

	Abstract
	1 Introduction
	2 related work
	2.1 Personalizing Web Search
	2.2 Context-aware document ranking

	3 HTPS: the Proposed Model
	3.1 Multi-stage Query Disambiguation
	3.2 Personalized language model
	3.3 Gated Joint of Two Models
	3.4 Re-ranking Search Results
	3.5 Training and Optimization

	4 Experimental setup
	4.1 Dataset
	4.2 Baselines
	4.3 Evaluation Metrics

	5 Results and analysis
	5.1 Overall Performance Comparison
	5.2 Ablation Analysis
	5.3 Effect of Short-term and Long-term History
	5.4 Performance on Different Query Sets

	6 Conclusion
	Acknowledgments
	References

