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ABSTRACT
Personalized search plays a crucial role in improving user search
experience owing to its ability to build user profiles based on his-
torical behaviors. Previous studies have made great progress in
extracting personal signals from the query log and learning user
representations. However, neural personalized search is extremely
dependent on sufficient data to train the user model. Data sparsity
is an inevitable challenge for existing methods to learn high-quality
user representations. Moreover, the overemphasis on final rank-
ing quality leads to rough data representations and impairs the
generalizability of the model. To tackle these issues, we propose
a Personalized Search framework with Self-supervised Learning
(PSSL) to enhance data representations. Specifically, we adopt a
contrastive sampling method to extract paired self-supervised in-
formation from sequences of user behaviors in query logs. Four
auxiliary tasks are designed to pre-train the sentence encoder and
the sequence encoder used in the rankingmodel. They are optimized
by contrastive loss which aims to close the distance between similar
user sequences, queries, and documents. Experimental results on
two datasets demonstrate that our proposed model PSSL achieves
state-of-the-art performance compared with existing baselines.
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1 INTRODUCTION
Search engines have been widely employed across the world as a
common tool for retrieving information. For the same query, these
platforms usually return the same document list for all users. This
strategy is difficult to meet the needs of all users due to the diversity
of user interests. To cope with this problem, personalized search has
been proposed to re-rank the search results tomeet user’s individual
needs [11, 30]. One essential problem in personalized search is
how to model the user preferences with respect to his query log.
Some early studies [13, 31, 35, 36] tried to extract personalized
features from user’s click-through data to predict user interests.
Recently, deep learning based methods [17, 40, 41, 44, 45] have been
proposed to build user profiles in semantic space. They applied
neural networks to learn effective user representations and brought
significant improvements in user satisfaction.

Although existing neural methods have made great progress in
improving user search experience, there are two weaknesses that
limit their ability to build user profiles. First, these models rely on
large amounts of training data to learn user representations more ac-
curately. However, some users only have limited click-through data
to train the user representations. Data sparsity is a major challenge
for neural personalized searchmodels. Second, existing approaches
optimize the model with only the personalized ranking task, which
will make the model overemphasize the final ranking quality. The
characteristics of query logs, such as the correlations between user
behaviors, are not well captured in data representations. Such rough
data representations will damage the generalizability of the model.
In fact, better data representations can further improve the quality
of search results. As can be seen from language models proposed
recently [10, 22, 29, 46], the pre-trained data representations benefit
the performance of various downstream tasks. This inspires us to
rethink the process of model optimization in personalized search.
We attempt to learn pre-trained data representations adapting to
personalized search, and fine-tune them on the ranking task.

Before the ranking task, how to incorporate the characteristics of
personalized search logs in data representations has become a new
challenge. Recently, self-supervised learning has achieved great
success in various information retrieval tasks, such as sequential
recommendation [38, 42] and ad-hoc document ranking [6, 18].
This is a new paradigm for unsupervised representation learning,
which aims to learn intrinsic data correlation from the raw data
without any supervision signal. The basic process of self-supervised
learning is to first construct training samples, and then devise
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auxiliary tasks to pre-train the model. Its advantages perfectly fit
our needs in dealing with the aforementioned two problems: data
sparsity and rough data representations. Due to its powerful ability
of extracting self-supervised signals from raw data, we intend to
apply it to capture behavioral characteristics in query logs, thereby
enhancing data representations for personalized search.

To support personalized search, we need two different categories
of representation learning tasks: sentence encoding and sequence
encoding. The former aims to learn the representations of queries
and documents, while the latter focuses on behavior sequence mod-
eling to obtain the user representations based on their query logs.
In fact, the users’ query logs contain a lot of paired self-supervised
information. For instance, if a user issues two similar queries to
find the same document, these two queries reveal the same inten-
tion. Moreover, two users who submit the same query to retrieve
the same document should show some similarities. To model such
paired search patterns in the query logs, we adopt a contrastive sam-
pling method to generate self-supervised signals for pre-training
tasks. Under this strategy, we can extract contrastive pairs that
show similar meanings from query logs. They help pre-train the
parameters of encoders with contrastive learning objectives [7, 14].

Specifically, we propose a Personalized Search framework with
Self-supervised Learning (PSSL), which is a neural model with two-
stage training. At the first stage, we use self-contrastive sampling
and user-contrastive sampling to generate self-supervised signals.
The former constructs the contrastive pairs from the query log of
a single user, while the latter extracts pairs from different users.
Based on the sampling from these two angles, four types of pairs,
namely query pairs, document pairs, sequence augmentation pairs,
and user pairs, are constructed for self-supervised learning. They
correspond to four self-supervised tasks to pre-train the sentence
encoder and the sequence encoder. As such, pre-trained encoders
adapt data representations to personalized search scenarios. At
the second stage, two encoders are applied to enhance the per-
sonalization, which will be fine-tuned with respect to the ranking
quality. To verify the validity of our model, we conduct experiments
on search logs from two real-world search engines. Experimental
results demonstrate that our model PSSL achieves state-of-the-art
performance compared with existing search models.

Our main contributions can be summarized as follows. (1) We
propose a two-stage training framework (i.e., pre-training and rank-
ing) for personalized search to strengthen data representations. To
the best of our knowledge, this is the first time that the use of
pre-training tasks for personalized search is investigated. (2) We
use self-supervised learning to capture correlations between user
behaviors at the pre-training stage, so as to learn better representa-
tions of user behaviors. (3) We adopt a contrastive sampling method
to generate training pairs for self-supervised learning. Based on
a contrastive learning framework, four self-supervised tasks are
devised to pre-train the encoders used in the ranking task.

2 RELATEDWORK
2.1 Personalized Search
Personalized search has been a research hotspot because it can
improve the ranking quality of search engines effectively [4]. Tra-
ditionally, click-based features are widely studied due to its easy

availability and reliability. Dou et al. [11] proposed P-click and G-
click models to count the number of historical clicks on the same
query from individual and group behaviors respectively, and fused
the results of personalized ranking and original ranking to get the
final results. Teevan et al. [31] also collected these click-based fea-
tures to identify personal navigation for personalizing the results.
Topic-based features extract the topic information of the document,
thereby modeling which topics users are interested in. The ODP
was a proper tool for representing the topic of documents and was
widely used for user modeling [2, 26, 37]. In order to tackle its
incomplete categories and huge labor cost, researches developed
the latent topic space to learn the vectors of documents automat-
ically [5, 13, 34, 36]. Later studies [3, 33, 37] used the learning to
rank method to combine these features.

In recent years, deep learning has been applied to user modeling
for personalized search, which is effective in exploring the poten-
tial interests of users [12, 19, 23, 40, 43–45]. An adaptive ranking
model was devised in [28] for building dynamic user profiles. Li
et al. [16] focused on in-session contextual ranking with semantic
features. Recently, various network structures have appeared in per-
sonalized search. Recurrent Neural Network was used to model the
sequential information of user interests [12]. Generative Adversar-
ial Network was applied to sample high quality training data [17].
Reinforcement Learning was used to model the dynamic change of
user search process [41]. In addition to building user profiles, Zhou
et al. [44] and Yao et al. [40] proposed to use the context of history
to learn the embedding of the current query. However, although
all these existing approaches paid attention to the models for user
modeling and personalized ranking, none of them has investigated
the use of pre-training tasks for personalized search. In this pa-
per, we propose a pre-training framework for personalized search,
which is a new paradigm for enhancing data representations.

2.2 Pre-training for Information Retrieval
Self-supervised learning is the mainstream way of pre-training,
which uses auxiliary tasks to mine its own supervised information
from large-scale unsupervised data. With this constructed supervi-
sion information, the network can be pre-trained to learn valuable
representations for downstream tasks. Some language models, such
as ELMo [22] and BERT [10], have made impressive progress in
natural language processing. They trained the representations of
words or sentences on self-supervised tasks and improved the per-
formance of downstream tasks. In the field of information retrieval,
some self-supervised learning frameworks were applied to recom-
mendation. Zhou et al. [42] used mutual information maximization
to learn the correlations among attributes, items, and sequences.
Xie et al. [38] proposed a contrastive learning framework to learn
high-quality user representations. For search tasks, Chang et al. [6]
designed several paragraph-level pre-training tasks to enhance the
representations of queries and documents. Ma et al. [18] presented
the model PROP, which constructed fake query-document pairs
based on query likelihood model on large-scale corpus. The success
of these studies shows that self-supervised learning is able to en-
hance data representations. In this paper, we attempt to enhance the
query, document, and user representations in personalized search
with a self-supervised learning framework.
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Figure 1: The architecture of our model PSSL, which is a two-stage training model. The first stage is pre-training with four
self-supervised tasks that are generated by two angles of contrastive sampling. At the second stage, the sequence encoder and
the sentence encoder are initialized with pre-trained parameters. The document ranking score is computed based on them.

3 PSSL: OUR PROPOSED MODEL
Personalized search has become an effective technique to improve
user search experience by modeling user interests. As we stated in
Section 1, existing personalization models suffer severely from data
sparsity and rough data representations. In this paper, we propose
a self-supervised learning framework to enhance data representa-
tions for personalized search. The architecture of our model PSSL
is shown in Figure 1. First, we devise two angles of contrastive sam-
pling to extract self-supervised signals from query logs, and use four
tasks for pre-training. And then, the encoders used in the ranking
model are initialized with pre-trained parameters. They contribute
to high-quality data representations and better personalization.

3.1 Problem Definition
Suppose that there is a set of users, denoted as 𝑈 . For each user 𝑢
in the set, the query log 𝐻𝑢 records the user’s historical behaviors,
including issuing a query and clicking on a document. We represent
the user’s query log as a sequence, i.e.,𝐻𝑢 = {𝑞1, 𝑑1,1, · · · , 𝑞𝑡−1, 𝑑𝑡−1,1},
where 𝑡 is the current timestamp, and 𝑑𝑖, 𝑗 refers to the 𝑗𝑡ℎ clicked
document under the query 𝑞𝑖 . Given the current query 𝑞, the candi-
date documents retrieved by the search engine are {𝑑1, 𝑑2, · · · }. Our
personalized task is a re-ranking process, which needs to score each
of the candidate documents based on the current query and the
user’s query log. We denote the score of the candidate document 𝑑
as score(𝑑 |𝑞, 𝐻𝑢 ), which consists of two parts:

score(𝑑 |𝑞, 𝐻𝑢 ) = 𝜙 (Pscore(𝑑 |𝐻𝑢 , 𝑞),Ascore(𝑑 |𝑞)), (1)

where Pscore(·) computes personalized relevance regarding the
user history, while Ascore(·) represents ad-hoc relevance between
the current query and the document. The function 𝜙 (·) is a multi-
layer perceptron with 𝑡𝑎𝑛ℎ(·) as the activation function.

3.2 The Architecture of Ranking Model
As we stated in Section 1, the representation learning tasks in per-
sonalized search mainly conclude two dimensions. One is sentence-
level encoding, which intends to learn the semantic representations

of queries and documents. The other is sequence-level encoding,
which focuses on learning user representations from their historical
behavior sequences. Based on this consideration, we propose a sen-
tence encoder and a sequence encoder to learn data representations.

The architecture of our ranking model is shown in the right
half of Figure 1. First, after the embedding layer, the current query
and the document are fed into the sentence encoder to learn the
representations. And then, given the user history, the sequence
encoder is applied to learn the query-aware user representation
based on the current intent. Finally, by matching the document with
the current query and the user representation, we can calculate the
ranking score of the document and obtain the personalized ranking
results. The details of each step are introduced as follows.

3.2.1 Embedding Layer. To learn the embedding of each query and
document, we initialize a word embeddingmatrix with𝑑-dimension,
𝑀 ∈ R |𝑊 |∗𝑑 , where |𝑊 | is the vocabulary size. Given a query or
a document, we first split it into words and then convert them
into word embeddings. The embeddings of the user history are
generated by converting each behavior in the sequence into vectors.
For convenience, all the characters that appear in the following
sections represent the vectors after the word embedding layer.

3.2.2 Sentence Encoder. Previous studies have pointed out that the
queries issued by users are usually short and ambiguous [8, 27].
Moreover, documents retrieved by search engines often contain
lots of worthless terms. Therefore, learning accurate semantic rep-
resentations of queries and documents is integral to search tasks.
We design a sentence encoder to tackle this problem. Given the
current query 𝑞 and the candidate document 𝑑 , their sentence-level
representations are computed as:

𝑞 = SenE(𝑞), 𝑑 = SenE(𝑑),

where the function SenE(·) is the sentence encoder. The detailed
implementation will be introduced in Section 3.4.

3.2.3 Sequence Encoder. User representation learning is one of
the most crucial tasks in personalized search. A high-quality user
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Figure 2: The overview of self-supervised tasks. Under two angles of contrastive sampling, we generate four types of self-
supervised signals from query logs, including document pair, query pair, sequence augmentation pair, and user pair. Con-
trastive loss is used to optimize the parameters of two encoders. The red lines show specific search patterns in query logs.

representation can accurately reflect the user’s preferences, thereby
affecting the ranking of the final document list. In general, the user
representation is learned from his query log, which can be regarded
as a behavior sequence. This promotes us to devise a sequence
encoder to model user interests based on historical behaviors.

Previous studies have shown that a dynamic user profile in re-
sponse to the current query performs better than the static ver-
sion [12, 28]. Inspired by this observation, we feed the user history
and the current query together into the sequence encoder to learn
the query-aware user representation. Formally, given the concate-
nated sequence of user’s history 𝐻𝑢 and current query 𝑞, the user
representation is defined as:

𝑢𝑞 = SeqE( [𝐻𝑢 , 𝑞]),

where the function SeqE(·) is the sequence encoder, which will
be also described in Section 3.4. The user representation 𝑢𝑞 will
contribute to matching with candidate documents in the following.

3.2.4 Re-ranking. As shown in Eq. (1), the final score of candidate
documents consists of two parts. For personalized relevance, we
compute the similarity between the user representation 𝑢𝑞 and the
document representation 𝑑 :

Pscore(𝑑 |𝐻𝑢 , 𝑞) = Sim(𝑢𝑞, 𝑑),

where the function Sim(·) is implemented by cosine similarity in
this work. For ad-hoc relevance, we first take the similarity between
the query representation and the document representation into
account. Moreover, following the previous work [3, 12], we extract
additional features to reveal the relevance between the query and
the document, including click-based features, topic-based features,
and several neural matching features. These features 𝑓𝑞,𝑑 are fed
into MLP to represent the relevance. Finally, the ad-hoc relevance
consists of two parts that are combined with another MLP layer:

Ascore(𝑑 |𝑞) = 𝜙

(
Sim

(
𝑞,𝑑

)
, 𝜙 (𝑓𝑞,𝑑 )

)
,

where 𝜙 (·) represents a multilayer perceptron. Two MLP layers
here have different parameters that are learned during the training.

By re-ranking the results based on the final score, we obtain the
personalized search results with respect to the user’s individual
interests. However, due to the shortcomings as we discussed in
Section 1, the training of sentence encoder and sequence encoder is
limited in data representations. To handle this problem,we apply the
self-supervised learning framework to pre-train the two encoders
with four auxiliary tasks.

3.3 Self-supervised Learning with Contrastive
Sampling

Self-supervised learning provides us with sufficient training sam-
ples for learning data representations. It can mine the correlations
between user behaviors to enhance the generalizability of themodel.
In this section, we will introduce how to extract self-supervised
signals from query logs to pre-train the two encoders.

To design auxiliary tasks that are helpful for personalization,
we design the learning objectives considering the characteristic of
personalized search. Since that the personalization relies heavily
on query logs, we attempt to mine specific search patterns in query
logs to construct self-supervised signals. In fact, there are plenty of
paired self-supervised information hidden in the query logs. For ex-
ample, if a user issued “Online translation” and “Google Translate”,
and clicked the same URL “https://translate.google.cn/” in the past,
we can infer that these two queries reflect the same intent for this
user. Therefore, bringing the representations of these two queries
closer helps infer the query intent. Such specific search patterns
can be transferred to documents and user’s behavior sequences for
constructing data pairs. Inspired by the contrastive learning frame-
work [7, 14], we propose two ways of data sampling to generate
paired data, i.e., self-contrastive sampling and user-contrastive sam-
pling. The overview of self-supervised tasks is shown in Figure 2.
Under two angles of contrastive sampling, four self-supervised
tasks are devised to pre-train the encoders.

3.3.1 Self-contrastive Sampling. Self-contrastive sampling aims
to extract data pairs with similar meanings from a single user’s
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historical behavior sequence. Based on this method, we propose
three auxiliary tasks for pre-training.

Document Pair. In the search process, a common scenario is
that a user clicks on multiple documents in the returned results
under a single query. This indicates that these clicked documents
are in line with the user’s query intent, and the information con-
tained in these documents has a certain similarity. Based on this
consideration, we design the task to close the representations of
clicked documents under the same query.

For the user 𝑢, suppose that he clicks two documents 𝑑𝑖 and 𝑑 𝑗
under the query 𝑞. After word embedding, we apply the sentence
encoder to learn their document representations 𝑑𝑖 and 𝑑 𝑗 :

𝑑𝑖 = SenE(𝑑𝑖 ), 𝑑 𝑗 = SenE(𝑑 𝑗 ), 𝑢 → 𝑞 → (𝑑𝑖 , 𝑑 𝑗 ),

where the path𝑢 → 𝑞 → (𝑑𝑖 , 𝑑 𝑗 ) means the user𝑢 issued the query
𝑞 and clicked the documents 𝑑𝑖 and 𝑑 𝑗 . The loss function is referred
to the contrastive learning loss that maximizes the similarity of
positive document pair. Following [7], considering a mini-batch of
𝑁 pairs of documents, we treat (𝑑𝑖 , 𝑑 𝑗 ) as the positive pair and treat
other 2(𝑁 − 1) documents within the same mini-batch as negative
samples 𝐷−. Formally, the loss function of this task L𝐷𝑃 for the
document pair (𝑑𝑖 , 𝑑 𝑗 ) can be defined as:

L𝐷𝑃 (𝑑𝑖 , 𝑑 𝑗 ) = −log
exp

(
Sim(𝑑𝑖 , 𝑑 𝑗 )

)
exp

(
Sim(𝑑𝑖 , 𝑑 𝑗 )

)
+ ∑
𝑑−∈𝐷−

exp
(
Sim(𝑑𝑖 , 𝑑−)

) ,
where the function Sim(·) is implemented by cosine similarity in
this paper. It can also be replaced by inner product.

Query Pair. As we discussed above, users may issue two similar
queries to find the same document. This inspires us to mine such a
search pattern and to close the representations of paired queries.

Suppose that for the user 𝑢, he clicked the document 𝑑 under the
query 𝑞𝑖 and 𝑞 𝑗 respectively. These two queries can form a positive
pair. The sentence encoder is applied to their embeddings to learn
the query representations:

𝑞𝑖 = SenE(𝑞𝑖 ), 𝑞 𝑗 = SenE(𝑞 𝑗 ), 𝑢 → (𝑞𝑖 , 𝑞 𝑗 ) → 𝑑.

We also use the contrastive learning framework to train the model.
For 𝑁 pairs of queries in a mini-batch, (𝑞𝑖 , 𝑞 𝑗 ) is regarded as the
positive pair, while the others are treated as negative queries 𝑄−.
The query pair loss function L𝑄𝑃 for (𝑞𝑖 , 𝑞 𝑗 ) is:

L𝑄𝑃 (𝑞𝑖 , 𝑞 𝑗 ) = −log
exp

(
Sim(𝑞𝑖 , 𝑞 𝑗 )

)
exp

(
Sim(𝑞𝑖 , 𝑞 𝑗 )

)
+ ∑
𝑞−∈𝑄−

exp (Sim(𝑞𝑖 , 𝑞−))
.

The above two pre-training tasks concentrate on learning the pa-
rameters of sentence encoder to enhance data representations. To
pre-train the sequence encoder, we design two tasks associated
with user representations based on their behavior sequences.

SequenceAugmentationPair. In personalized search, themain
task is to model the user interests from his historical behavior se-
quence. In order to achieve better personalization, we hope that the
sequence encoder can highlight the behaviors that best reflect the
user’s personality. To implement this idea, we apply the sequence
augmentation to construct different views of the user’s behavior
sequence. The representations of augmented sequence pair should
be closer than augmented sequences from other users.

Specifically, there are three sequence augmentation strategies for
user’s behavior sequence. (1) Behavior deleting. This way randomly
deletes some behaviors from the sequence to enhance the general-
izability of the model. We believe that the remaining behaviors in
the sequence can also represent the user to a certain extent. (2) Be-
havior reorder. This strategy randomly swaps the positions of some
behaviors. Although the order of behavior has a certain impact on
the modeling of user interests, the user’s long-stable preferences
will not change and should be highlighted by the sequence encoder.
(3) Session deleting. This method randomly deletes some sessions
from the sequence. Users sometimes issue a series of queries in
one session for a single information need. The remaining behaviors
provide a local view of the user representation.

For the user history 𝐻𝑢 , we apply two random augmentation
strategies on the sequence, and get two augmented sequences 𝐻𝑢,𝑖

and 𝐻𝑢,𝑗 . After the embedding layer, we use the sequence encoder
to learn the representations of 𝐻𝑢,𝑖 and 𝐻𝑢,𝑗 :

𝑠𝑖 = SeqE(𝐻𝑢,𝑖 ), 𝑠 𝑗 = SeqE(𝐻𝑢,𝑗 ),

where 𝑠𝑖 and 𝑠 𝑗 are representations of augmented sequences for
the user. They respectively represent some of the user preferences,
and form the positive pair for training. The augmented sequences
from other users’ query logs in the same mini-batch are regarded
as the negative samples 𝑆−. Similarly, the loss function of sequence
augmentation pair L𝑆𝐴𝑃 for the user history 𝐻𝑢 is:

L𝑆𝐴𝑃 (𝐻𝑢 ) = −log
exp

(
Sim(𝑠𝑖 , 𝑠 𝑗 )

)
exp

(
Sim(𝑠𝑖 , 𝑠 𝑗 )

)
+ ∑
𝑠−∈𝑆−

exp (Sim(𝑠𝑖 , 𝑠−))
.

3.3.2 User-contrastive Sampling. In addition to self-supervised sam-
pling, we believe that the behavior sequences of different users can
also form data pairs. The reason is that users with similar search
behaviors tend to have similar interests. Therefore, we attempt to
extract self-supervised signals from different users’ query logs.

User Pair. For ambiguous queries, the retrieved documents of-
ten contain multiple topics. Different user groups tend to click on
documents with different topics. For example, for the query “Ap-
ple”, some users prefer “Apple company”, while others focus on
“Apple fruit”. We believe that users with the same preferences have
a certain similarity in user representations. To improve the effec-
tiveness of training, we only choose the queries with ambiguity
(click entropy greater than 1.0) to construct user pairs.

For two users 𝑢𝑖 and 𝑢 𝑗 , if they both issued the query 𝑞 and
clicked on the same document 𝑑 , these two users can be regarded as
the positive pair facing the query 𝑞. Note that the sequences of user
history 𝐻𝑢𝑖 and 𝐻𝑢 𝑗

only contain the behaviors before the query
𝑞. The sequence encoder is used to learn their query-aware user
representations 𝑢𝑞

𝑖
and 𝑢𝑞

𝑗
:

𝑢
𝑞

𝑖
= SeqE( [𝐻𝑢𝑖 , 𝑞]), 𝑢

𝑞

𝑗
= SeqE( [𝐻𝑢 𝑗

, 𝑞]), (𝑢𝑖 , 𝑢 𝑗 ) → 𝑞 → 𝑑.

Similar to the previous tasks, the set of negative samples𝑈 − consists
of representations of other users in the mini-batch. The user pair
loss function L𝑈𝑃 for the user 𝑢𝑖 and 𝑢 𝑗 is:

L𝑈𝑃 (𝐻𝑢𝑖 , 𝐻𝑢 𝑗
) = −log

exp
(
Sim(𝑢𝑞

𝑖
, 𝑢

𝑞

𝑗
)
)

exp
(
Sim(𝑢𝑞

𝑖
, 𝑢

𝑞

𝑗
)
)
+ ∑
𝑢−∈𝑈 −

exp
(
Sim(𝑢𝑞

𝑖
, 𝑢−)

) .

Full Paper Track  CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2753



3.4 The Implementation Details of Encoders
In this section, we will introduce the implementation details of the
sentence encoder and the sequence encoder. The basic structure
is based on the Transformer encoder [32] to model the contextual
information following [44].

Implementation of Sentence Encoder. To tackle the query
ambiguity and document noise at word level, we attempt to com-
bine contextual information of surrounding words to represent
sentences. The transformer encoder is applied to learn the context-
aware sentence representations, which is widely used in various
fields. Formally, for a query or a document, suppose it consists of 𝑛
words, i.e., 𝑞 = {𝑤1,𝑤2, · · · ,𝑤𝑛}. The sentence encoder is:

SenE(𝑞) = Transformersum
𝑤 ( [𝑤1,𝑤2, · · · ,𝑤𝑛]),

where the function Transformersum
𝑤 means the sum of outputs of

word-level transformer layer. The final output is the sentence rep-
resentation which considers the contextual information.

Implementation of Sequence Encoder. Existing studies have
pointed out that long-term history and short-term user history play
different roles in personalized search [12, 36]. Long-term history
generally contains user behaviors before the current session, and
often reflects the user’s long-stable interests. Short-term history
refers to the user’s past interactions in the current session, which
shows the user’s recent information needs. Based on this consid-
eration, we use a hierarchical transformer structure to learn user
representations following [44].

Given a user history 𝐻𝑢 , we divide it into long-term and short-
term history 𝐻 𝑙

𝑢 and 𝐻𝑠
𝑢 , which are fed into two transformers to

model user preferences from different views. To learn the user
representation based on the current query 𝑞, we concatenate it
with short-term history to model the user’s information need of
the current session. Moreover, a ‘[User]’ token is added at the
end of the sequence to represent the summarized user representa-
tion. The sequence encoder consists of a short-term transformer
Transformer𝑠 (·) and a long-term transformer Transformer𝑙 (·):

SeqE(𝐻𝑢 , 𝑞) = Transformerlast
𝑙

( [
𝐻 𝑙
𝑢 , 𝑢

𝑞,𝑠
] )

,

𝑢𝑞,𝑠 = Transformerlast
𝑠

( [
𝐻𝑠
𝑢 , 𝑞, [User]

] )
,

where the superscript 𝑙𝑎𝑠𝑡 means taking the last position as the
output. Finally, the output represents the user representation which
contributes to the personalization of search results.

3.5 Training and Optimization
The training process of PSSL includes two stages: pre-training and
fine-tuning. At the first stage, we optimize the loss of the four
self-supervised tasks (L𝐷𝑃 , L𝑄𝑃 , L𝑆𝐴𝑃 , and L𝑈𝑃 ) to pre-train the
sentence encoder and sequence encoder. At the second stage, two
encoders are initialized by the pre-trained parameters, and we use
the ranking task to fine-tune them and train the whole network.
The ranking loss is computed by cross entropy in a pairwise way:

L𝑅𝑎𝑛𝑘 (𝑑𝑖 , 𝑑 𝑗 ) = −
(
𝑝𝑖 𝑗 log(𝑝𝑖 𝑗 ) + 𝑝 𝑗𝑖 log(𝑝 𝑗𝑖 )

)
,

where𝑑𝑖 is the positive sample and𝑑 𝑗 is the negative sample, 𝑝𝑖 𝑗 and
𝑝𝑖 𝑗 represent the predicted probability and the real probability that
𝑑𝑖 is more relevant than 𝑑 𝑗 . The 𝑝𝑖 𝑗 is computed by 𝑝 (𝑑𝑖 |𝐻𝑢 , 𝑞) −
𝑝 (𝑑 𝑗 |𝐻𝑢 , 𝑞) with sigmoid normalization.

Table 1: Basic statistics of the datasets.

Dataset AOL Commercial
# Users 110,439 33,204
# Queries 736,454 267,479
# Sessions 279,930 97,858
Average query length 2.87 3.25
Average #click per query 1.11 1.19

4 EXPERIMENTAL SETUP
4.1 Dataset
We conduct our experiments on AOL search logs [21] and a com-
mercial dataset. The basic statistics are shown in Table 1.

AOL dataset: The AOL search log is a public dataset, which
contains users’ click-through data from 1st March, 2006 to 31st
May, 2006. Following the previous work [1], we remove all non-
alphanumeric characters from the queries, and regard the document
title as the content to compute the relevance. Since the dataset
only records clicked documents without the returned document
lists, BM25 algorithm [25] is used to select candidate documents
from the top results. To identify a session, similarity between two
consecutive queries is considered with threshold of 0.5. Based on
the above operations, each piece of data includes an anonymous
user ID, a session ID, a query, the query issued time, a document
URL, the ranking position, the document title, and a click tag. Since
the personalized search requires historical information to build the
basic user profile, we use the first five weeks data as background set.
The last eight weeks data is regarded as the experimental set, which
is further divided into training set, validation set and test set in a
4:1:1 ratio. To ensure that the data is sufficient for personalization,
we remove users whose background set or training set is empty.

Commercial dataset: This dataset records the query log in Jan-
uary and February, 2013 from a large commercial search engine.
There are some differences between this dataset and AOL in data
processing. First, the candidate documents are collected directly
from the document list returned by the search engine. The origi-
nal ranking quality is much higher than BM25. Second, we crawl
the content corresponding to the URL to represent the document,
instead of just the title. This will provide us with more accurate
document representations. Third, since this dataset records the click
dwell time of each URL, we treat the URL whose click dwell time is
greater than 30s as the satisfied document. We keep the same ratio
as AOL to collect the background set and the experimental set.

4.2 Baselines
To compare the performance of our model and other neural rank-
ing models, we select several typical ad-hoc search models and
personalized search models as baselines. They are:

KNRM [39]. It is a neural rankingmodel based on kernel-pooling
for ad-hoc search. Multi-level soft matching features are extracted
from the word similarity matrix for ranking.

Conv-KNRM [9]. It adds a convolutional layer on the KNRM to
model n-gram soft matches. Contextual information of surrounding
words are considered to improve matching accuracy.

BERT [24]. This model applies the pre-trained BERT model to
query-document matching task. The concatenated query-document
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Table 2: The results of all models on two datasets. The percentage is based on the SOTA baseline. ‘†’ indicates the model
outperforms all baselines significantly with paired t-test at p < 0.05 level. Best results are denoted in bold.

Model AOL dataset Commercial dataset
MAP MRR P@1 MAP MRR P@1 P-improve

Ad-hoc search baselines
Ori. .2504 -64.9% .2596 -64.2% .1534 -75.6% .7399 -10.2% .7506 -10.0% .6162 -15.6% - -
KNRM .4291 -39.8% .4391 -39.5% .2704 -56.9% .4916 -40.3% .5001 -40.1% .2849 -61.0% .0655 -75.3%
Conv-KNRM .4738 -33.5% .4849 -33.2% .3266 -48.6% .5872 -28.7% .5977 -28.4% .4188 -42.7% .1422 -46.5%
BERT .5033 -29.4% .5135 -29.3% .3552 -43.4% .6232 -24.4% .6326 -24.2% .4475 -38.7% .1778 -33.1%
Personalized search baselines
HRNN .5423 -23.9% .5545 -23.6% .4854 -22.7% .8065 -2.1% .8191 -1.8% .7127 -2.4% .2404 -9.5%
PSGAN .5480 -23.1% .5601 -22.8% .4892 -22.1% .8135 -1.3% .8234 -1.3% .7174 -1.8% .2489 -6.3%
RPMN .5926 -16.9% .6049 -16.7% .5322 -15.2% .8238 - .8342 - .7305 - .2656 -
HTPS .7091 -0.5% .7251 -0.1% .6268 -0.1% .8224 -0.2% .8324 -0.2% .7286 -0.3% .2552 -3.9%
PEPS .7127 - .7258 - .6279 - .8221 -0.2% .8321 -0.3% .7251 -0.7% .2545 -4.2%
Our method
PSSL .7359† +3.3% .7484† +3.1% .6431† +2.4% .8301† +0.8% .8398† +0.7% .7338† +0.5% .2688† +1.2%

sequence is fed into the pre-trained BERT model. The last layer’s
representation of ‘[CLS]’ token is regarded as the matching features.
The BERT model are fine-tuned during the training.

HRNN [12]. For personalized search, this work models the se-
quential information of query logs and learns dynamic user profiles
based on the current query. Hierarchical recurrent neural networks
with query-aware attention is used to implement this idea.

PSGAN [17]. This study concentrates on data augmentation
based on generative adversarial network for personalized search.
It aims to extract valid training data from limited and noisy click
data. Considering the cost of training, we take the discriminator in
the document selection based model as the baseline.

RPMN [45]. This is amemory network-based personalized search
model, which attempts to identify potential re-finding behaviors
in personalized search. It devises three external memories to cover
two types of re-finding behavior.

PEPS [40]. This model trains personal word embeddings for each
user based on his historical data, and abandons the construction
of user profiles. Personal and global word embeddings are both
considered for better data representations.

HTPS [44]. This is a personalized search framework based on hi-
erarchical transformer. Transformer encoder is first used to encode
history as contextual information to disambiguate the query.

4.3 Implementation Details
For our proposed model PSSL1, the word embedding matrix are
initialized by the word2vec [20] model following [12, 17]. It will
be fixed in the pre-training phase, and be fine-tuned during the
training of ranking task. We conducted multiple experiments to
select the parameters of the model. Finally, the dimension of the
word embedding is 100. The hidden size of transformer is 512.
The number of attention heads in transformer is 6. The number of
transformer layers is 6. The number of MLP hidden units is 128. The
learning rate of the pre-training task and the ranking task are set to
1𝑒−3 and 3𝑒−4 respectively. At the pre-training stage, for sequence
augmentation strategies, we change 50% of user behaviors in the

1The code of the model is available on https://github.com/smallporridge/PSSL.

sequence. For four tasks (DP, QP, SAP, and UP), we sample about
163k, 293k, 728k, 128k contrastive pairs on the AOL dataset and
52k, 103k, 264k, 21k contrastive pairs on the commercial dataset.
The weights for the four losses (L𝐷𝑃 , L𝑄𝑃 , L𝑆𝐴𝑃 , and L𝑈𝑃 ) are
set as 0.5, 0.5, 1.0, 0.2.

4.4 Evaluation Metrics
Since the AOL dataset does not contain user click dwell time, we
simply label the clicked documents as relevant, while the satisfied
documents in the commercial dataset are regarded as relevant. To
evaluate the model performance, we employ mean average pre-
cise(MAP), mean reciprocal rank (MRR), and precision@1 (P@1)
to measure the ranking quality. However, the above metrics are
somewhat problematic due to the position bias [15] in re-ranking
tasks. To measure the ranking results in a more objective man-
ner, we apply another metric called P-improve to evaluate reliable
improvements on the inverse document pair following previous
works [12, 17]. Since the candidate documents of AOL dataset are
not presented to users, we only use this metric on the commercial
dataset which suffers from the position bias.

5 RESULTS AND ANALYSIS
5.1 Overall Performance Comparison
The results of different models on the two datasets are shown in
Table 2. It can be observed that:

(1) Our method vs. baselines. Our proposed model PSSL outper-
forms all baseline models on both datasets. Compared with the best
baseline model, PSSL shows significant improvements in all evalu-
ation metrics with paired t-test at p < 0.05 level. Specifically, our
model improves the ranking quality by 3.3% on MAP on the AOL
dataset compared with PEPS, while outperforms RPMN by 0.8%
on the commercial dataset. This indicates that the self-supervised
learning framework helps the model learn better data representa-
tions and further improves the personalization. The improvement
on the two datasets also verifies the generalizability of our model.

(2) Personalized search vs. ad-hoc search. The ad-hoc search
concentrates on improving matching accuracy between the query
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Table 3: Performance of ablation studies on self-supervised tasks of the PSSL model.

Model AOL dataset Commercial dataset
MAP MRR P@1 MAP MRR P@1 P-improve

Tasks of sentence encoder
w/o. DP .7296 -0.9% .7434 -0.7% .6389 -0.7% .8296 -0.1% .8390 -0.1% .7331 -0.1% .2678 -0.4%
w/o. QP .7252 -1.5% .7398 -1.1% .6368 -1.0% .8288 -0.2% .8381 -0.2% .7325 -0.2% .2662 -1.0%
w/o. DP+QP .7200 -2.2% .7357 -1.7% .6341 -1.4% .8287 -0.2% .8381 -0.2% .7324 -0.2% .2658 -1.1%

Tasks of sequence encoder
w/o. SAP .7212 -2.0% .7362 -1.6% .6343 -1.4% .8242 -0.7% .8348 -0.6% .7288 -0.7% .2584 -3.9%
w/o. UP .7288 -1.0% .7430 -0.7% .6382 -0.7% .8270 -0.4% .8366 -0.4% .7306 -0.4% .2632 -2.1%
w/o. SAP+UP .7170 -2.6% .7330 -2.1% .6316 -1.8% .8222 -1.0% .8321 -1.0% .7272 -0.9% .2548 -5.2%

PSSL .7359 - .7484 - .6431 - .8301 - .8398 - .7338 - .2688 -

and the document, while the personalized search focuses on how to
model user interests based on historical behaviors. All neural per-
sonalized search models outperform ad-hoc baselines significantly,
while the improvement on the metric P@1 is more obvious. This
reflects the personalization models performwell on modeling user’s
re-finding behavior. Our model PSSL combines the advantages of
these two types of search models, using a sentence encoder for
query-document matching and a sequence encoder for user repre-
sentation learning. With a self-supervised learning framework, this
is proven to be effective in improving the ranking quality.

(3) AOL dataset vs. commercial dataset. The commercial dataset
has relatively higher original ranking quality than AOL, which leads
to the results that ad-hoc search baselines perform worse than the
original ranking on the commercial dataset. The model HTPS and
PEPS, which incorporate interactive matching features between
the query and the document, make a significant improvement on
the AOL dataset, but they underperform the RPMN on the commer-
cial dataset. This shows that the AOL dataset tests the model on
modeling user interests and text matching at the same time, while
the commercial dataset focuses more on testing the personalization
capabilities of the model. Our model performs well on both datasets,
which further proves the robustness of PSSL model.

In summary, the results indicate that self-supervised learn-
ingwith contrastive sampling for personalized search is con-
ducive to refine data representations and promote search re-
sults personalization. To test the model in more detail, we con-
duct several supplementary experiments: ablation studies, effect of
self-supervised learning, and performance on different query sets.

5.2 Ablation Studies
To verify the necessity of each of our self-supervised tasks, we
conduct ablation experiments on two datasets for the whole model
PSSL. Specifically, we explore the role of each self-supervised task
on the two encoders respectively, including the tasks of document
pair (DP), query pair (QP), sequence augmentation pair (SAP), and
user pair (UP). We also remove the pre-training of sentence encoder
(DP+QP) or sequence encoder (SAP+UP) to observe the results.

As shown in Table 3, the removal of each self-supervised task
will damage the results on all evaluation metrics. Concretely, delet-
ing the task of SAP causes the most obvious impact on performance
on both datasets. This indicates that our sequence augmentation
strategies help the sequence encoder model the user representa-
tions more accurately. Meanwhile, the task of UP also makes some
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Figure 3: The query distribution of the user #104.

contributions to the results, which shows that closing the distance
between similar users is useful for user modeling. Additionally, we
find that removing the pre-training of sentence encoder causes a
severe drop on the AOL dataset, while it has little effect on the
commercial dataset. A possible reason is that the pre-training of
sentence encoder is more helpful for computing ad-hoc relevance.
For the AOL dataset, the ad-hoc relevance is more useful due to the
poor original ranking quality. But for the commercial dataset, its
high-quality original ranking results have provided effective ad-hoc
relevance. It can be seen that the task of QP is more important than
DP for personalizing the results. This indicates that the queries can
provide more additional personalized information for the model.

5.3 Effect of Self-supervised Learning
In order to explore the impact of self-supervised tasks on data rep-
resentations in more detail, we visualize the quality of the sentence
encoder and sequence encoder respectively.

Quality of Sentence Encoder. The self-supervised tasks for
sentence encoder mainly enhance the representations of queries
and documents, so as to close the distance between similar data. In
order to verify the enhancement of data representations by the self-
supervised tasks, we compare the distribution of initialized and self-
supervised query vectors. Specifically, we randomly select a user
from the AOL dataset and map his high-dimensional query vectors
to a two-dimensional space through PCA. Queries containing the
same clicked document are set to the same color.

The results are shown in Figure 3. We find the initialized query
distribution is more dispersive, and self-supervised learning makes
the distance of queries with the same color closer. For instance, the
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Figure 4: Distribution of similarity between users.

queries with red color “macy s” and “macy s com” have a certain
distance in the initialized distribution, but are obviously closer after
the self-supervised learning. This indicates that although these two
queries have some differences in words, they tend to reflect the
same query intent for the user in search scenario. Additionally, the
self-supervised learning intends to map the queries into multiple
groups. The distance within the group is close, while the boundary
between the groups is relatively clear. This shows our model can
not only close the distance between similar queries, but also widen
the distance between different groups.

Quality of Sequence Encoder. The sequence encoder is de-
signed for learning accurate user representations, which is a critical
indicator to distinguish users. In order to observe the impact of
self-supervised tasks on the sequence encoder, we compare the
difference between initialized and self-supervised user represen-
tations. Specifically, we randomly select 1000 users from the AOL
dataset and calculate the similarity between the representations of
every two users. We divide the bar at 0.025 intervals, and count the
number of user pairs that fall in each range.

From Figure 4, it can be seen that the similarity between user
representations generally obeys normal distribution. The initial-
ized user representations show higher consistency, which means
that the model cannot effectively identify the differences between
users. With the self-supervised tasks, the average similarity be-
tween users becomes smaller. This indicates that the differences
between users are magnified. Another interesting finding is that
for the self-supervised user representations, the distribution is not
completely symmetrical. Ranges with greater similarity contain
more user pairs. This may benefit from the self-supervised task of
UP, which aims to close the distance between similar users.

5.4 Performance on Different Query Sets
In the search process, according to the different search purposes,
the user’s queries can be classified as the navigational query and
the informational query. For navigational queries, different users
tend to have the same query intent. The informational queries are
usually ambiguous and have multiple meanings. To measure the
query ambiguity, we compute the click entropy and set 1.0 as the
threshold to divide the queries into two subsets. We choose the
best baseline model for comparison. Additionally, we remove the
pre-training of sentence encoder (w/o. SenE) or sequence encoder
(w/o. SeqE) for detailed analysis. We use the improvement of MAP
over original ranking to show the performance.
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Figure 5: The results on queries with different click en-
tropies with the threshold at 1.0.

As shown in Figure 5, all models perform better on navigational
queries for the AOL dataset, but this is inconsistent with the results
on the commercial dataset. A possible reason is that the commercial
dataset has a high-quality original ranking, which has little room for
improvement on navigational queries. Our proposed model PSSL
outperforms PEPS on both query sets, especially on the queries
with larger click entropy. This indicates that our model is able
to learn high-quality user representations when facing ambiguous
queries. Specifically, removing the pre-training of sequence encoder
causes severe decline on informational queries. This shows that
the pre-trained sequence encoder contributes to modeling user in-
terests more. For sentence encoder, the self-supervised tasks show
effectiveness on the AOL dataset, but the contribution on the com-
mercial dataset is limited. This is in line with the characteristics
of the two datasets. When the dataset requires more attention on
ad-hoc relevance, our pre-trained sentence encoder can provide
more accurate query-document matching.

6 CONCLUSION
In this paper, we proposed a self-supervised learning framework for
personalized search to enhance data representations. First, we pre-
sented a ranking model which consists of a sentence encoder and
a sequence encoder. Next, we designed two angles of contrastive
sampling methods to generate paired self-supervised data from
users’ query logs. Four auxiliary tasks were devised to pre-train the
two encoders for personalized search. Endowed with the benefit
of pre-trained parameters, we could get better data representa-
tions to improve the personalized results and the generalizability
of the model. Experimental results confirmed the effectiveness and
robustness of our proposed two-stage training framework.
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