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ABSTRACT
The use of large language models (LLMs) as automated evaluation
tools to assess the quality of generated natural language, known
as “LLMs-as-Judges”, has demonstrated promising capabilities and
is rapidly gaining widespread attention. However, when applied
to pairwise comparisons of candidate responses, LLM-based eval-
uators often exhibit selection bias. Specifically, their judgments
may become inconsistent when the option positions or ID tokens
are swapped, compromising the effectiveness and fairness of the
evaluation result. To address this challenge, we introduce CalibraE-
val, a novel label-free method for mitigating selection bias during
inference. Specifically, CalibraEval reformulates debiasing as an
optimization task aimed at adjusting observed prediction distri-
butions to align with unbiased prediction distributions. To solve
this optimization problem, we propose a non-parametric order-
preserving algorithm (NOA). This algorithm leverages the partial
order relationships between model prediction distributions, thereby
eliminating the need for explicit labels and precise mathematical
function modeling. Empirical evaluations of LLMs in multiple rep-
resentative benchmarks demonstrate that CalibraEval effectively
mitigates selection bias and improves performance compared to
existing debiasing methods. This work marks a step toward build-
ing more robust and unbiased automated evaluation frameworks,
paving the way for improved reliability in AI-driven assessments1.

∗Corresponding author
1The code can be found at https://github.com/CSHaitao/CalibraEval.
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1 INTRODUCTION
In recent years, large language models (LLMs) have attracted wide-
spread attention in both academia and industry [16, 23, 35]. These
models achieve significant performance in a wide range of tasks,
sometimes even exceeding human capabilities [8]. However, eval-
uating the quality of the texts generated by LLMs is difficult, par-
ticularly in subjective tasks such as open-ended story creation and
summarization. Traditional n-gram metrics (like BLEU [24] and
ROUGE [21]) and semantic-based metrics (such as BERTScore [37]
and BARTScore [33]) are insufficient to comprehensively reflect
the capabilities of LLMs. Human evaluation, often regarded as the
“gold standard”, can measure model performance most accurately
and provide valuable feedback, but it is costly and time-consuming.
Therefore, the demand for effective automated evaluation methods
is growing increasingly [27].

Some powerful commercial LLMs, such as GPT-4, have been
widely applied to evaluate the quality of texts generated in re-
sponse to open-ended questions. This paradigm, known as “LLMs-
as-Judges”, provides a scalable and transparent alternative to human
evaluation of text quality. Within this paradigm, two commonmeth-
ods are pointwise and pairwise evaluations. In pointwise evaluation,
LLMs assign scores to individual responses based on specific crite-
ria, while in pairwise comparison, LLMs select the better response
between two options. Pointwise evaluation tends to be unstable
and susceptible to noise, as subtle differences in wording or inter-
pretation may lead to inconsistent results. In contrast, pairwise
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Which response is Better?
A: This is…. [1]
B: In this way… [2]

Which response is Better?
B: In this way… [1]
A: This is….      [2]

A: This is….        [1]

B: In this way… [1]

Prefers a specific position

Prefers a specific token

1st position > 2nd position

Which response is Better?
A: In response to… [1]
B: A relevant point...     [2]

Which response is Better?
B: In response to…        [1]
A:A relevant point...      [2]

A: In response to… [1]

A: A relevant point…[2]

Token A > Token B

Figure 1: Illustration of selection bias in LLMs-as-Judges.
Selection bias manifests in two aspects: prefers a specific
position or prefers a specific token.

comparison can better reflect human judgment [22, 40], resulting
in its widespread application and considerable attention.

Despite the success, LLMs are not perfect evaluators and are be-
lieved to exhibit certain biases [39, 40]. As shown in Figure 1, when
applied to pairwise comparisons of candidate responses, simply
changing the positions or the ID tokens may lead to inconsistent
evaluation results. Previous studies have classified these biases as
position bias [27, 40] and token bias [25, 26]. Positional bias refers
to the tendency of LLMs to favor answers based on their specific
positions (e.g., first or last), and token bias indicates that LLMs may
assign more probability to certain option ID tokens (e.g., A or B).
Given the inherent link between option tokens and their positions,
we collectively refer to them as selection bias in this paper.

Addressing selection bias in “LLMs-as-Judges” is crucial for en-
suring valid and fair evaluations. However, this task is not trivial,
as selection bias is influenced by task-specific characteristics, such
as domain and difficulty, as well as the inherent properties of LLMs,
such as context window, family characteristics, and model capabili-
ties [27, 32]. A straightforward method is to exclude inconsistent
judgments or consider them “ties” [4, 40]. While this approach
enhances consistency and reliability, it may lead to a loss of evalu-
ative information. Furthermore, more advanced methods, such as
split and merge [20] or discussions [3, 19] among multiple agents,
have been proposed to improve evaluation effectiveness. However,
these approaches typically require multiple rounds of interaction,
making them costly and time-consuming, and their effectiveness
in mitigating selection bias remains uncertain.

To address these limitations, we propose CalibraEval, a label-free,
inference-time method for mitigating selection bias. CalibraEval re-
formulates the debiasing problem as an optimization task to build a
projection function that maps the original prediction distribution to
an unbiased distribution. Our optimization objective is based on con-
sistency judgments obtained after swapping option positions and ID
tokens. Moreover, we propose a non-parametric order-preserving
algorithm (NOA). The NOA narrows the solution space by preserv-
ing the partial order relationship between predicted distributions
of observed samples. It derives the optimal calibration function by
exploiting the relationship between the prediction distributions
from different combinations of options. This approach effectively
minimizes the reliance on explicit labels and precise mathematical
function modeling, enhancing scalability and transferability.

We conduct extensive experiments on representative evaluation
benchmarks with various LLMs. The experimental results indicate
that CalibraEval outperforms strong baselines in debiasing per-
formance and achieves state-of-the-art results. Furthermore, we
validate CalibraEval’s robustness across diverse prompt templates,
varied option tokens, and in-context learning scenarios, demon-
strating its potential for application in a variety of contexts. To
summarize, we make the following contributions:

(1) We propose a label-free, inference-time calibrated method
CalibraEval. By learning a lightweight calibration function,
CalibraEval effectively mitigates selection bias, demonstrat-
ing both significant effectiveness and efficiency.

(2) We reformulate the debiasing problem as an optimization
task and propose a non-parametric order-preserving algo-
rithm (NOA) to solve it efficiently.

(3) We conduct extensive experiments on public benchmarks.
Experimental results demonstrate the effectiveness and ro-
bustness of CalibraEval.

2 RELATEDWORK
2.1 LLMs as Judges
The rapid development of large language models (LLMs) in recent
years has highlighted the urgent need for effective evaluation meth-
ods [5, 15, 27, 30]. Traditional evaluation metrics, such as BLEU [24]
and ROUGE [21], fall short in comprehensively capturing model
performance. These metrics typically overlook nuanced aspects
of generated texts, such as coherence, relevance, and contextual
appropriateness. Moreover, manual evaluation can provide more
accurate assessments and nuanced insights, but it is both costly and
time-consuming, making it impractical for large-scale assessments.
This situation highlights the urgent need for more advanced and
efficient automated evaluation techniques that can keep pace with
the evolving capabilities of LLMs [6, 17, 18, 31].

To tackle these challenges, the “LLMs-as-Judges” approach has
emerged as a promising alternative [32]. This method utilizes pow-
erful, widely recognized LLMs, such as GPT-4 [23], to facilitate
automated evaluation, thereby reducing the dependence on manual
assessment. Generally speaking, the “LLMs-as-Judges” evaluation
approach can be classified into two categories: pointwise [12] and
pairwise [14, 43]. Pointwise evaluation involves LLM judges scoring
individual responses based on specific criteria. Pairwise comparison
requires choosing the better answer from two responses. Pairwise
comparison evaluation has gained widespread adoption and partic-
ular attention due to its outstanding performance. Wang et al. [29]
discovered that pairwise comparison methods outperform tradi-
tional score-based evaluation approaches in terms of consistency
with human assessments. Liu et al. [22] observed that pairwise
comparisons better reflect human evaluation standards compared
to other methods. This advantage may be attributed to the fact that
LLMs often utilize pairwise preference or ranking data during the
Reinforcement Learning from Human Feedback (RLHF) training
phase [9].

Furthermore, some researchers have explored integrating mul-
tiple LLMs into evaluation systems, aiming to produce effective
results through collaboration [3], discussion [19], and debate [6]
among the models. However, these approaches typically require
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multiple rounds of interaction, leading to increased resource con-
sumption. In summary, pairwise comparison evaluation is relatively
more straightforward and less resource-intensive, which is regarded
as a more economical and effective solution.

2.2 Bias in LLM Judges
While “LLMs-as-Judges” has emerged as a promising alternative to
human evaluation in many tasks, concerns have been raised about
the reliability of these judges due to potential biases inherent in
LLMs. These biases pose significant challenges to the effectiveness
and fairness of such evaluation systems [27, 41].

Recent research has identified various biases affecting LLM eval-
uations, including selection bias [40], position bias [20], contextual
bias [42], and self-reinforcing bias [19, 36]. Among these, selection
bias has emerged as a particularly critical issue, as it is prevalent
across various tasks and affects both open-source and commer-
cial models, significantly impacting their performance. This bias
is typically evident in pairwise comparison evaluations: if an LLM
evaluation model consistently favors a specific option even after
swapping positions or IDs, this indicates the presence of selection
bias. Two types of bias may contribute to selection bias: position
bias and token bias. However, there is still no consensus on which
of these two is the dominant factor [25, 26].

Effectively mitigating bias remains an unresolved issue. Scholars
are exploring various approaches to identify and reduce biases in
LLMs [27, 36, 41]. Shi et al. [27] conducted a systematic study on
positional bias through pairwise comparison evaluations, provid-
ing detailed recommendations for selecting judgment LLMs that
balance consistency, fairness, and cost-effectiveness. Chua et al. [7]
proposed Bias-Consistent Training (BCT) to fine-tune models, aim-
ing to enhance consistent reasoning between prompts with or with-
out biased features. Li et al. [20] introduced the “split and merge”
method, which divides answers into multiple parts and aligns simi-
lar content in candidate answers to calibrate position bias. Zheng et
al. [39] use prior estimates from partial samples to address selection
bias. Furthermore, Liu et al. [22] argued that existing calibration
techniques aimed at reducing bias are insufficient for calibrating
LLM evaluators, even with supervised data. Therefore, mitigating
biases in “LLM-as-Judges” is a widespread, significantly impactful,
and challenging issue.

3 CALIBRAEVAL
In this section, we first present the problem statement of the de-
biasing process and the optimization objective. Then, we provide
a detailed introduction to the non-parametric order-preserving
algorithm (NOA).

3.1 Problem Statement
In this paper, we focus on addressing the selection bias present in
“LLMs-as-Judges”. Selection bias refers to the phenomenon where
LLMs consistently prefer a specific option during pairwise compar-
isons, regardless of the content.

To standardize the terminology, we define the following terms:
𝑡𝑖 represent the option ID tokens (e.g., A, B), and 𝑜𝑖 denotes the
specific option contents (e.g., Response_x, Response_y). Addition-
ally, let 𝐼 represent the input instruction, and 𝑋0 represent the

default connection of option ID tokens and contents, that is, 𝑋0 =

[(𝑡1, 𝑜1); (𝑡2, 𝑜2)].
Following previous studies [39], we assume that when the LLM

serves as an evaluator, the observed probability distribution 𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
on 𝑡𝑖 can be decomposed into a combination of the prior distribution
𝑃𝑝𝑟𝑖𝑜𝑟 and the debiased distribution 𝑃𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑 , i.e.,

𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 (𝑡𝑖 |𝐼 , 𝑋0) = 𝑓 (𝑃𝑝𝑟𝑖𝑜𝑟 (𝑡𝑖 |𝐼 , 𝑋0), 𝑃𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑 (𝑡𝑖 |𝐼 , 𝑋0)) (1)

where 𝑓 (·) is a function that represents the relationship between
𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 , 𝑃𝑝𝑟𝑖𝑜𝑟 and 𝑃𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑 . Accurately estimating the form
of 𝑓 (·) is challenging. Firstly, the interaction between 𝑃𝑝𝑟𝑖𝑜𝑟 and
𝑃𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑 is complex and may not be simply multiplicative or ad-
ditive. Secondly, the observed probability distributions 𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
may be affected by noise, complicating the identification of the
precise form of 𝑓 (·). In previous work, Zheng et al. [39] proposed
Pride, which simplify the problem by assuming that 𝑓 (·) is a linear
multiplication, i.e.,

𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 (𝑡𝑖 |𝐼 , 𝑋0) ∝ 𝑍−1
𝐼 ,𝑋0

𝑃𝑝𝑟𝑖𝑜𝑟 (𝑡𝑖 |𝐼 , 𝑋0)×𝑃𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑 (𝑡𝑖 |𝐼 , 𝑋0) (2)

where 𝑍−1
𝐼 ,𝑋0

is the normalization item. Zheng et al. [39] select a
subset of test samples and then use the average observed probability
distributions from different arrangements as the prior estimates
𝑃𝑝𝑟𝑖𝑜𝑟 (𝑡𝑖 ). The debiasing is then performed using the following
equation:

𝑃𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑 (𝑡𝑖 |𝐼 , 𝑋0) ∝ 𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 (𝑡𝑖 |𝐼 , 𝑋0)/𝑃𝑝𝑟𝑖𝑜𝑟 (𝑡𝑖 ) (3)

Although Pride is effective, its simplified assumption overlooks
the complex relationships between probability distributions, leading
to suboptimal performance.

In this paper, considering the complexity of 𝑓 (·), we do not at-
tempt to directly create a precise mathematical function of 𝑓 (·).
Instead, we focus on determining a calibration function 𝑔(·), which
can map the observed probabilities to an unbiased probability dis-
tribution, i.e.,

𝑃𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑 (𝑡𝑖 |𝐼 , 𝑋0) = 𝑔(𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 (𝑡𝑖 |𝐼 , 𝑋0)) (4)

3.2 Optimization Objective
In this section, we reformulate the debiasing problem as an opti-
mization task, with the unbiased probability distribution serving as
the optimization objective. Intuitively, an unbiased evaluator should
provide consistent judgments even when the option position or ID
tokens are swapped. Specifically, in pairwise comparisons, there
are four possible combinations of positions and ID tokens:

𝑋0 = [(𝑡1, 𝑜1); (𝑡2, 𝑜2)], 𝑋1 = [(𝑡2, 𝑜2); (𝑡1, 𝑜1)] (5)

𝑋2 = [(𝑡1, 𝑜2); (𝑡2, 𝑜1)], 𝑋3 = [(𝑡2, 𝑜1); (𝑡1, 𝑜2)] (6)
In Figure 2, we present the relationship among these four combi-

nations. An unbiased evaluator can accurately determine the correct
option context, regardless of changes in option orders (Swap Posi-
tions) or option ID tokens (Swap Tokens). Suppose that the ground
truth is 𝑜1, the evaluator should satisfy the following conditions:

𝑃𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑 (𝑡1 |𝐼 , 𝑋0) = 𝑃𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑 (𝑡1 |𝐼 , 𝑋1) = 𝑃𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑 (𝑡2 |𝐼 , 𝑋2)
(7)

𝑃𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑 (𝑡2 |𝐼 , 𝑋2) = 𝑃𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑 (𝑡2 |𝐼 , 𝑋3) = 𝑃𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑 (𝑡1 |𝐼 , 𝑋0)
(8)
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Swap 
Tokens

Swap 
Positions

Swap 
Positions

Swap 
Tokens

Which response is 
Better?
A: Response 1
B: Response 2

𝑋! = [ 𝑡", 𝑜" ; 𝑡#, 𝑜# ]

Which response is 
Better?
B: Response 2
A: Response 1

𝑋" = [ 𝑡#, 𝑜# ; 𝑡", 𝑜" ]

Which response is 
Better?
A: Response 2
B: Response 1

𝑋# = [ 𝑡", 𝑜# ; 𝑡#, 𝑜" ]

Which response is 
Better?
B: Response 1
A: Response 2

𝑋$ = [ 𝑡#, 𝑜" ; 𝑡", 𝑜# ]

Figure 2: Four different types of combinations. 𝑡1/𝑡2 rep-
resents the option IDs (A/B), while 𝑜1/𝑜2 denotes the cor-
responding option contents. An unbiased evaluator consis-
tently ranks the responses regardless of changes in option
order (Swap Positions) or option ID tokens (Swap Tokens),
ensuring fairness and consistency in the results.

Since Equations (7) and Equations (8) are duals, we only need
to select one as the optimization objective. Also, we can simply
normalize the original token prediction probabilities, ensuring that
the sum of the probabilities for outputs 𝑡1 and 𝑡2 equals 100%, i.e.,

𝑃𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑 (𝑡1 |𝐼 , 𝑋0) = 1 − 𝑃𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑 (𝑡2 |𝐼 , 𝑋0) (9)

With the above reasoning, we formulate the debiasing problem
on 𝐾 samples as follows:

min
𝑔∈G

𝐾∑︁
𝑖=1

[𝑔(𝑠𝑖0) +𝑔(𝑠
𝑖
2) − 1]2 + [𝑔(𝑠𝑖0) −𝑔(𝑠

𝑖
1)]

2 − 𝜆[𝑔(𝑠𝑖0) −𝑔(𝑠
𝑖
2)]

2

(10)
𝑠 .𝑡 .𝑠𝑖𝑗 = 𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 (𝑡1 |𝐼 , 𝑋 𝑗 ), 𝑗 = 0, 1, 2, 𝑖 = 1, ..., 𝐾 . (11)

where𝑔(·) is the mapping function for the probability of token 𝑡1. G
denotes the solution space of 𝑔(·). 𝜆 is a hyper-parameter. For each
option ID token, a corresponding mapping function 𝑔(·) is defined.
In the following process, we use 𝑔(·) as an example. In Equations
(10), the first term ensures consistent judgments when option ID
tokens are swapped. The second term aims to maintain consistent
judgment when option positions are exchanged. The third term
serves as a regularization term, which prevents convergence to the
trivial solution 𝑔(·) = 0.5.

3.3 Non-parametric Order-Preserving
Algorithm (NOA)

The optimization problem presented in Equation (10) is an NP
problem, featuring an extensive solution space G. Furthermore, the
absence of explicit labels prevents us from employing supervised
methods to determine 𝑔(·).

To address these limitations, we propose a non-parametric order-
preserving algorithm called NOA. Non-parametric methods do
not rely on specific model assumptions, making them well-suited
for handling high-dimensional data or complex functions. NOA

searches for the optimal solution by directly evaluating the output
of the calibration function, eliminating the need for explicit labels
or precise mathematical modeling.

To narrow the solution space G, we assume that the mapping
function 𝑔(·) is order-preserving for the same ID token. This as-
sumption, widely and implicitly applied in previous work [38, 39],
rests on the premise that the prior distribution 𝑃𝑝𝑟𝑖𝑜𝑟 reflects the
LLM’s inherent bias toward certain option ID tokens, which remains
conditionally independent of the unbiased probability distribution
𝑃𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑 . Intuitively, for a given LLM, the partial order relation-
ship under the same prior bias should remain consistent, meaning
higher observed probabilities generally correspond to higher unbi-
ased probabilities for the same ID token.

Specifically, we first collect an estimation set with 𝐾 samples.
Each sample is processed by swapping ID tokens and swapping
positions, resulting in three probabilities 𝑠0 (default output), 𝑠1
(swap positions), and 𝑠2 (swap ID tokens). The probabilities from all
samples are combined into a set 𝑆 = {𝑠𝑖0, 𝑠

𝑖
1, 𝑠

𝑖
2 |𝑖 ∈ 1, ..., 𝐾}. Then,

we sort 𝑆 in ascending order to form a sequence 𝑧1 ≤ 𝑧2 ≤ ... ≤
𝑧𝑀−1, where𝑀 = 3𝐾 + 1. We then append boundary conditions to
the sorted sequence by defining 𝑧0 = 0 and 𝑧𝑀 = 1, producing the
complete sequence 𝑍 = {𝑧0, 𝑧1, ..., 𝑧𝑀−1, 𝑧𝑀 }.

To optimize the model, we introduce a set of parameters 𝑑𝑘
(𝑘 = 0, 1, 2, ..., 𝑀) initialized to the values of 𝑧𝑘 . These parameters
will be optimized during the process. Then, we define the mapping
function 𝑔(·) using the softmax-like expression:

𝑔(𝑧𝑘 ) =
∑𝑘
𝑖=0 𝑒𝑥𝑝 (𝑑𝑖 )∑𝑀
𝑖=0𝑒𝑥𝑝 (𝑑𝑖 )

(12)

𝑔(·) is a discrete mapping function with parameters 𝑑𝑘 , which
satisfies the constraint of order preservation. We employ gradient
descentmethods to iteratively update the parameters𝑑𝑘 . The update
rule is given by:

𝑑
(𝑛𝑒𝑤 )
𝑘

= 𝑑
(𝑜𝑙𝑑 )
𝑘

− 𝛾 𝜕𝐿
𝜕𝑑𝑘

(13)

where 𝛾 is the learning rate, 𝐿 = [𝑔(𝑠𝑖0) + 𝑔(𝑠
𝑖
2) − 1]2 + [𝑔(𝑠𝑖0) −

𝑔(𝑠𝑖1)]
2 − 𝜆[𝑔(𝑠𝑖0) − 𝑔(𝑠

𝑖
2)]

2. This iterative process allows the pa-
rameters to converge toward the optimal values that minimize the
loss, thereby reducing the bias in the probability distribution.

For 𝜕𝐿
𝜕𝑑𝑘

, we derive the following equation. The detailed deriva-
tion process can be found in Appendix A.

𝜕𝐿

𝜕𝑑𝑘
=

(
2

[
𝑔

(
𝑠𝑖0

)
+ 𝑔

(
𝑠𝑖2

)
− 1

]
+ 2

[
𝑔

(
𝑠𝑖0

)
− 𝑔

(
𝑠𝑖1

)] ) 𝜕𝑔 (
𝑠𝑖0

)
𝜕𝑑𝑘

+
(
−2

[
𝑔

(
𝑠𝑖0

)
− 𝑔

(
𝑠𝑖1

)] ) 𝜕𝑔 (
𝑠𝑖1

)
𝜕𝑑𝑘

+
(
2

[
𝑔

(
𝑠𝑖0

)
+ 𝑔

(
𝑠𝑖2

)
− 1

]
− 2𝜆

[
𝑔

(
𝑠𝑖0

)
− 𝑔

(
𝑠𝑖2

)] ) 𝜕𝑔 (
𝑠𝑖2

)
𝜕𝑑𝑘

(14)
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𝜕𝑔
(
𝑧 𝑗

)
𝜕𝑑𝑘

=


−

∑𝑗

𝑖=0 exp(𝑑𝑖 ) exp(𝑑𝑘 )(∑𝑀
𝑖=0 exp(𝑑𝑖 )

)2 ( 𝑗 < 𝑘)

exp(𝑑𝑘 )
(∑𝑀

𝑖=0 exp(𝑑𝑖 )−
∑𝑗

𝑖=0 exp(𝑑𝑖 )
)(∑𝑀

𝑖=0 exp(𝑑𝑖 )
)2 ( 𝑗 ≥ 𝑘)

(15)

We note that there are infinite solutions that satisfy the opti-
mization problem. This is because any constant change in the value
of 𝑑𝑘 does not affect the relative values in the exponential terms of
Equation (12). To obtain a unique solution, we apply the normaliza-
tion constraint

∑𝑀
𝑖=0 𝑑𝑖 = 0 after each iteration. The optimization

proceeds until a convergence criterion is met, such as the loss func-
tion 𝐿 reaching a minimum threshold or the parameter updates
becoming sufficiently small.

After the solution process converges, we obtain the sample
points 𝑍 = {𝑧1, ..., 𝑧𝑀−1} and their corresponding calibrated val-
ues 𝑦 = {𝑔(𝑧1), ..., 𝑔(𝑧𝑀−1}. For sample points not included in 𝑍 ,
we use existing sample points to learn the continuous calibration
function 𝑔∗ (·). The goal is to identify a set of non-decreasing piece-
wise linear functions that minimize the sum of squared deviations
between the estimated values and the calibrated values of the sam-
ples. Specifically, we fit the calibration values by minimizing the
following objective function:

𝑚𝑖𝑛

𝑀−1∑︁
𝑖=1

𝑤𝑖 (𝑔(𝑧𝑖 ) − 𝑔∗ (𝑧𝑖 ))2 (16)

𝑠 .𝑡 .𝑧1 ≤ 𝑧2 ... ≤ 𝑧𝑀−1 (17)

𝑀−1∑︁
𝑖=1

𝑤𝑖 = 1,𝑤𝑖 ≥ 0 (18)

The above problem is a weighted least squares quadratic program-
ming problem. We apply the Pool Adjacent Violators Algorithm
(PAVA) [34] to derive the continuous calibration function 𝑔∗ (·).

It is worth noting that CalibraEval does not require explicit labels
and can be executed during inference with minimal computational
cost. The calibration function can be calculated after observing all
test samples or by utilizing a subset of samples. The entire process
of CalibraEval is summarized in Algorithm 1 in the Appendix.

4 EXPERIMENT SETUP
4.1 Datasets and Metrics
We conduct experiments on three representative benchmarks. The
statistics are shown in Appendix B.1.
• RewardBench [14] is a benchmark dataset designed for evalu-
ating reward models. It contains 2,985 prompt-choice-rejection
trios across four task categories: Chat, Chat Hard, Safety, and
Reasoning.

• MTBench [40] is a multi-turn response dataset. It contains 3,355
expert-level pairwise human preferences for responses, generated
by 6 models for 80 MTBench questions.

• PreferenceBench [13] is a test set designed to assess the eval-
uation capabilities of LLMs, comprising 2,000 response pairs
(classified as “win” or “lose”) and 200 evaluation criteria.

In the evaluation, we primarily utilize reference-freemetrics to
measure the consistency of model evaluations. We compute Fleiss’s
Kappa coefficient [10] and intraclass correlation coefficient (ICC) [2]
between the evaluation results obtained after swapping option ID
tokens and option positions. We report two specific ICC metrics:
ICC(2,k) and ICC(3,k) in this paper.

For the reference-based evaluation, we report the standard
deviation of recalls (RStd) and accuracy. Following Zheng et al. [39],
the balance of recalls serves as an effective measure of the extent
of selection bias. A greater imbalance in recalls signifies a more
pronounced selection bias. In addition, MTBench includes “tie” op-
tions assessed by human evaluators. We exclude all “tie” options
when calculating the reference-based metrics. In Appendix B.2, we
provide the details of evaluation metrics.

4.2 Baselines
We employ the following methods as our baselines. Since CalibraE-
val is a label-free method, we do not compare it with supervised
methods.

• Debiasing Instruct (DI) is implemented by including the in-
struction: “Avoid any position bias and ensure that the order
in which the responses were presented does not influence your
decision. Do not allow the length of the responses to influence
your evaluation. Do not favor certain tokens of the option. Be as
objective as possible”.

• Contextual Calibration (CC) [38] involves applying an affine
transformation to model outputs in order to calibrate LLM predic-
tions. It estimates the bias for each option tokens by requesting
its prediction with a prompt alongside a content-free input, such
as “N/A”.

• Domain-context Calibration (DC) [11] is designed to mini-
mize label bias in in-context learning. It estimates a contextual
prior by using a random in-domain sequence, achieving state-of-
the-art results.

• Pride [39] estimates the model’s prior bias toward option ID
token by reorganizing the test samples and then removes this
bias using a division operation.

4.3 Implementation Details
We evaluate six models from three LLM-families including: Llama-
3-8B [28], Llama-3.1-8B [28], Qwen-14B [1], Qwen-72B [1], Chat-
GPT [23], and GPT-4o [23]. The version of ChatGPT used is gpt-
3.5-turbo-1106. The estimation set used to derive the calibration
function can be constructed either by sampling from the test data
or by using the entire test set without the gold labels. For a fair
comparison, we opted for the latter approach. In the main exper-
iment, all baselines used the full test data as the prior estimation
set. For CC, we use the predefined token “N/A” to replace the op-
tion contents, generating content-free input. For DC, we randomly
extract words from the task corpus to construct the content-free
input. Moreover, we set 𝜆 = 0.5 and 𝛾 = 10. We employ the batch
gradient descent method with a batch size of 32. The optimization
process stops when the parameters change range is less than the
threshold 𝜖 i.e.,

∑𝑁
𝑖=1 △𝑑𝑖 < 𝜖 . The 𝜖 is set to 0.001. All experiments

presented in this paper are conducted on 8 NVIDIA Tesla A100
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Table 1: Performance comparison between CalibraEval and baselines. We report the Fleiss’ Kappa (%) and Intraclass Correlation
Coefficient (%) for each dataset and the averages. The row corresponding to the model name represents the default results
without applying any debiasing methods. Best performances are marked bold.

Model RewardBench MTBench PreferenceBench Average
Kappa ICC(2,k) ICC(3,k) Kappa ICC(2,k) ICC(3,k) Kappa ICC(2,k) ICC(3,k) Kappa ICC(2,k) ICC(3,k)

Llama-3-8B 20.81 66.24 71.79 14.36 60.96 73.08 58.25 86.23 86.61 31.14 71.14 77.16
DI 19.63 64.98 70.87 15.93 59.11 65.00 39.90 76.77 80.87 25.15 66.95 72.25
CC 15.49 58.77 63.70 5.60 39.48 52.45 54.84 83.60 86.26 25.31 60.62 67.47
DC 23.57 69.04 72.79 25.28 69.83 72.75 50.78 84.88 85.09 33.21 74.58 76.88
Pride 27.65 72.72 73.77 27.38 72.27 74.50 57.01 85.49 86.33 37.35 76.83 78.20

CalibraEval 30.32 86.51 86.66 28.63 75.45 76.80 58.54 88.17 89.43 39.16 83.38 84.30
Llama-3.1-8B 15.02 68.82 76.65 16.91 62.51 67.60 38.73 74.61 78.46 23.55 68.65 74.24

DI 21.59 74.04 80.00 15.12 53.24 57.08 36.59 68.47 72.14 24.43 65.25 69.74
CC 16.89 59.24 60.09 2.59 32.42 33.96 40.80 76.69 78.44 20.09 56.12 57.50
DC 23.17 72.89 76.22 16.02 65.86 68.80 41.61 77.23 78.81 26.55 71.68 74.18
Pride 14.63 66.62 76.02 17.98 63.76 67.51 38.58 76.84 79.35 23.73 69.07 74.29

CalibraEval 20.67 83.23 86.68 19.12 66.00 69.26 43.04 81.56 82.78 27.61 76.93 79.57
Qwen-14B 19.69 63.41 66.86 17.53 54.43 65.11 48.94 84.90 88.78 28.72 67.58 73.58

DI 11.90 50.46 53.20 4.98 36.83 46.02 30.76 74.41 82.95 15.88 53.90 60.72
CC -1.62 -4.71 -4.93 -5.48 18.08 31.20 40.35 73.79 75.56 11.08 29.05 33.94
DC 16.04 45.10 45.26 25.51 64.37 66.46 48.15 82.29 84.52 29.90 63.92 65.41
Pride 24.73 67.46 68.30 13.00 51.73 57.39 52.79 90.86 91.20 30.17 70.02 72.30

CalibraEval 26.40 75.75 76.11 17.68 53.64 63.43 62.91 92.56 92.57 35.66 73.98 77.37
Qwen-72B 78.28 92.77 93.13 71.35 90.33 91.16 82.77 94.78 94.90 77.47 92.63 93.06

DI 77.33 92.27 92.63 68.17 89.13 89.99 83.31 95.09 95.11 76.27 92.16 92.58
CC 69.23 88.71 89.92 70.64 90.29 90.72 78.08 92.63 93.24 72.65 90.54 91.29
DC 66.61 87.03 87.90 64.59 87.46 88.45 74.03 91.01 92.01 68.41 88.50 89.45
Pride 78.64 92.99 93.30 71.50 90.54 91.27 83.44 94.89 95.00 77.86 92.81 93.19

CalibraEval 82.80 95.47 95.75 71.88 95.70 96.71 85.25 97.56 97.57 79.98 96.24 96.68
ChatGPT 20.08 62.67 70.75 37.25 73.90 76.92 64.62 87.63 87.81 40.65 74.73 78.49

DI 24.52 70.23 71.58 24.33 66.80 67.69 56.00 82.90 84.89 34.95 73.31 74.72
CC 24.28 57.25 58.23 23.71 64.06 71.91 61.63 86.18 86.38 36.54 69.16 72.17
DC 27.94 66.09 70.54 16.68 58.37 70.26 55.33 81.92 82.58 33.32 68.79 74.46
Pride 28.25 70.38 73.16 39.02 76.61 77.61 64.64 87.56 87.82 43.97 78.18 79.53

CalibraEval 32.02 77.25 77.60 39.71 79.07 79.85 65.52 87.77 87.92 45.75 81.36 81.79
GPT4o 82.57 94.83 94.89 72.42 92.99 93.20 79.42 93.50 94.11 78.14 93.77 94.07
DI 78.57 93.72 94.01 74.21 93.35 93.50 79.97 94.48 94.93 77.58 93.85 94.15
CC 81.38 94.47 94.48 67.10 90.30 90.78 77.56 92.76 93.43 75.35 92.51 92.90
DC 76.89 92.28 92.35 68.94 90.94 91.64 70.48 89.30 90.02 72.10 90.84 91.34
Pride 82.53 94.94 94.98 70.34 92.35 92.74 79.74 93.62 94.20 77.54 93.64 93.97

CalibraEval 83.25 96.25 96.27 72.60 95.04 95.20 79.73 97.29 97.60 78.53 96.19 96.36

GPUs. All the prompts used in this paper can be found in Appendix
D.

5 EXPERIMENT RESULT
5.1 Main Results
To validate the effectiveness of CalibraEval in mitigating selection
bias, we test the consistency of evaluation results among different
models on benchmarks. The performance comparison of CalibraE-
val with baselines is presented in Table 1. Based on the experimental
results, we can draw the following conclusions.
• Debiasing Instruct does not consistently lead to improved or
more robust performance, as its effectiveness is limited by the

instruction-following capabilities of LLMs and the nature of tasks.
In some cases, adding debiasing instructions may even result in
consistency degradation. Consequently, relying solely on instruc-
tions is not a reliable approach for effective debiasing.

• CC and DC are originally designed to mitigate label bias in in-
context learning. Therefore, their estimated priors may not ac-
curately reflect the inherent selection bias in LLMs-as-Judges,
leading to suboptimal debiasing performance and difficulties in
interpretation.

• When applied to lower-capability LLMs, such as Llama-3-8B
and Qwen-14B, Pride effectively estimates bias and improves
consistency. However, its effectiveness diminishes with more
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Table 2: Results of reference-based metrics. We report the
Standard Deviation of Recalls (RStd) and Accuracy (Acc.),
with the best results highlighted in bold. ↓ indicates that
lower values correspond to better performance.

Model RewardBench MTbench Preference Bench
Rstd Acc.(%) Rstd Acc.(%) Rstd Acc.(%)

Llama-3-8B 15.01 65.79 16.42 67.08 3.36 83.43
Pride 7.51 66.54 11.64 70.63 4.35 83.24

CalibraEval 6.48 68.12 5.22 70.63 3.42 83.98
Qwen-14B 11.63 63.14 17.24 65.61 11.99 80.68

Pride 4.18 64.09 16.31 65.29 7.36 83.55
CalibraEval 2.72 64.25 6.26 68.64 5.12 83.88
ChatGPT 16.79 65.27 7.66 72.67 3.04 85.61
Pride 8.54 66.36 6.01 72.86 3.51 85.68

CalibraEval 5.51 67.13 5.20 72.98 2.82 85.98

advanced models (e.g., GPT4o). This limitation may arise from
the simplified probabilistic relationships employed in Pride.

• CalibraEval consistently improves performance across various
LLMs and tasks. On average, CalibraEval shows enhancements
over all the baselines. Overall, CalibraEval is a versatile tech-
nique applicable to multiple evaluation tasks, delivering stable
performance improvement. This also indicates that CalibraEval
can effectively reduce selection bias in LLMs-as-judges, leading
to more consistent and fair evaluation results.
Table 2 presents the performance of the reference-based metrics.

Due to space constraints, we only report the experimental results
for Llama-3-8B, Qwen-14B, and ChatGPT, while the complete re-
sults are available in Appendix C. For a fair comparison, we report
the average values of Rstd and Accuracy under the conditions of
swapping option positions and option IDs. Across the average per-
formance of the three datasets, CalibraEval consistently achieves
lower Rstd and higher accuracy, outperforming other baselines.
Surprisingly, although this is not the original intent, CalibraEval
frequently improves accuracy. We believe this may indicate that
selection bias influences the model’s judgments, leading to reduced
accuracy. Therefore, effective bias mitigation methods can enhance
the model’s performance in its evaluative role. Additionally, we
found that lower Rstd is often associated with higher accuracy. The
more pronounced the debiasing effect, the more significant the per-
formance improvement. For example, on RewardBench, ChatGPT’s
Rstd decreased from 16.79 to 5.51, while its accuracy increased from
65.27 to 67.13. Overall, CalibraEval not only enhances the reliability
of model evaluations but also unlocks the potential for these LLMs
to perform optimally in various tasks.

5.2 Robustness Analysis
In this section, we conduct additional experiments to further vali-
date the effectiveness of CalibraEval across diverse scenarios. Due
to the high cost of GPT-4o, we opt for Qwen-72B and ChatGPT on
the RewardBench for the following experiments. Unless otherwise
stated, the ICC for subsequent experiments is ICC(2,k).

5.2.1 Different prompt templates. We conduct experiments on four
distinct prompt templates (see Appendix D for details). Figure D

(a) ChatGPT-ICC (b) ChatGPT-Kappa

(c) Qwen72B-ICC (d) Qwen72B-Kappa

Figure 3: Performance comparison across different prompt
templates.

(a) ChatGPT-ICC (b) ChatGPT-Kappa

(c) Qwen72B-ICC (d) Qwen72B-Kappa

Figure 4: Performance comparison across different ID tokens.

shows performance comparisons on RewardBench. We observed
that model outputs without bias correction exhibit low consistency
and high variance. While Pride improves consistency, it still exhib-
ited considerable variance. In contrast, CalibreEval demonstrates
substantial performance enhancement while maintaining low vari-
ance, indicating its consistent effectiveness across different prompt
templates.

5.2.2 Different ID tokens. We also conduct experiments using four
distinct sets of ID tokens: A/B, a/b, Alice/Bob, and X/Y. Figure 4
illustrates the performance comparison. CalibraEval consistently
achieves significant performance improvements with low variance
across all tested ID tokens. This highlights its robustness and effec-
tiveness regardless of the specific tokens used. Furthermore, when
applied to the highly consistent model Qwen-72B, the improve-
ment of Pride is negligible, while CalibreEval continued to enhance
consistency even further.
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(a) ChatGPT

(b) Qwen-72B

Figure 5: Performance comparisonunder in-context learning.

5.2.3 Different number of in-context learning examples. We further
investigate the effectiveness of CalibraEval when conducting in-
context learning. Specifically, we provided the LLMs with 1-shot,
2-shot, and 3-shot examples, respectively. As shown in Figure 5,
CalibraEval remains effective even when examples are provided
for in-context learning. We find that as the number of examples
increases, the consistency of the model’s judgments also improves.
This may be because examples help the model better understand
the task, leading to more confident and consistent evaluations. Ad-
ditionally, we also observed that the effectiveness of calibration
methods like Pride and CalibraEval decreases as the number of
examples increases. This may be due to these examples introducing
new biases, which affect the effectiveness of the calibration. There-
fore, we believe that calibration methods have greater potential for
application in zero-shot scenarios.

5.3 Ablation Studies
To better illustrate the rationality and effectiveness of model de-
sign, we conduct two ablation experiments. We first analyze the
effectiveness of well-defined optimization objectives. Specifically,
we consider two variants. The first variant focuses solely on ensur-
ing that the model maintains consistent judgments after swap ID
tokens, i.e.,

𝐿1 = 𝑎𝑟𝑔min
𝑔∈𝐺

𝐾∑︁
𝑖=1

[𝑔(𝑠𝑖0) + 𝑔(𝑠
𝑖
2) − 1]2 − 𝜆[𝑔(𝑠𝑖0) − 𝑔(𝑠

𝑖
2)]

2 (19)

The other variant focuses on ensuring that the model maintains
consistent judgments after position exchanges, represented as:

𝐿2 = 𝑎𝑟𝑔min
𝑔∈𝐺

𝐾∑︁
𝑖=1

[𝑔(𝑠𝑖0) − 𝑔(𝑠
𝑖
1)]

2 − 𝜆[𝑔(𝑠𝑖0) − 0.5]2 (20)

(a) ChatGPT

(b) Qwen-72B

Figure 6: Performance of CalibraEval across different esti-
mate set sizes. “Percentage” refers to the proportion of the
test set selected for use as the estimation set.

Since this variant does not involve 𝑠𝑖2, the regularization term is
modified to [𝑔(𝑠𝑖0) − 0.5]2 to prevent the model from converging
to a trivial solution.

Table 3 illustrates the impact of different optimization objec-
tives. Both objectives contribute to the calibration benefits observed.
When the model is significantly influenced by position bias, the
improvements from 𝐿2 are more substantial. Conversely, when to-
ken bias is more prevalent, 𝐿1 leads to better improvements. The
combination of both objectives, which defines our CalibraEval opti-
mization goal, achieves optimal performance. These experiments
validate the effectiveness of our chosen optimization settings.

In Figure 6, we further test the impact of the estimation set size
on the performance. We randomly sampled a certain proportion of
test data to estimate the calibration function, which is then applied
to debias the entire test set. We found that increasing the size of
the estimation set can better enhance consistency. Additionally, a
smaller estimation set can also effectively support CalibraEval in
reducing bias. For ChatGPT, using only 10% of the data resulted
in improvements of over 85% compared to the full dataset. Over-
all, even with limited data, CalibraEval can still produce reliable
calibration functions.

6 CONCLUSION
In this paper, we propose CalibraEval to mitigate the selection bias
present in LLM-as-judges. We reformulate the debiasing problem as
an optimization problem and utilize the characteristics of unbiased
evaluators as our optimization objectives. Moreover, we propose the
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Table 3: Ablation study on RewardBench. Best results are
marked bold.

Model Kappa ICC(2,k) ICC(3,k) Rstd↓ Acc.
ChatGPT 20.08 62.67 70.75 16.79 65.27
w. 𝐿1 26.78 72.04 73.66 10.32 65.33
w. 𝐿2 27.38 72.73 75.99 8.64 66.04
w. both 32.02 77.25 77.60 5.50 67.13

Qwen-72B 78.28 92.77 93.13 4.01 87.20
w. 𝐿1 81.95 94.94 95.04 2.42 87.78
w. 𝐿2 81.32 93.77 95.52 2.78 87.74
w. both 82.80 95.47 95.75 0.94 88.06

non-parametric order-preserving algorithm (NOA) to determine the
calibration function. Experiments involving six LLMs across three
representative datasets demonstrate that CalibraEval effectively
reduces selection bias while enhancing accuracy. We argue that
mitigating selection bias is essential for developing more reliable
LLM evaluators. In the future, we plan to investigate additional
biases in LLM-as-judges applications to create even more robust
and trustworthy automated evaluations of large models.
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A SUPPLEMENTARY PROOF
To compute 𝜕𝐿

𝜕𝑑𝑘
for the given loss function:

[𝑔(𝑠𝑖0) + 𝑔(𝑠
𝑖
2) − 1]2 + [𝑔(𝑠𝑖0) − 𝑔(𝑠

𝑖
1)]

2 − 𝜆[𝑔(𝑠𝑖0) − 𝑔(𝑠
𝑖
2)]

2 (21)
Applying the chain rule, we have:
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For 𝑔(𝑠𝑖0):
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Then, We substitute the derivatives back into the equation 22:
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Next, using the quotient rule, the derivative of 𝑔(𝑧 𝑗 ) with respect

to 𝑑𝑘 is:
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For 𝑗 < 𝑘 , 𝑑𝑘 affects the denominator:
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For 𝑗 >= 𝑘 , 𝑑𝑘 affects both the numerator and the denominator:
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The final formula is as follows.
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Algorithm 1: Calibration process of CalibraEval
Input: Language model, test samples D, estimate set size 𝐾 ,

threshold 𝜖
Output: Debiased Prediction Y

1 Sample 𝐾 estimation samples from the test samples D
2 for each sample 𝑖 ∈ {1, ..., 𝐾} do
3 Generate the probabilities after exchanging option IDs

and positions.
4 Obtain the set 𝑠𝑖 = {𝑠𝑖0, 𝑠

𝑖
1, 𝑠

𝑖
2}

5 end
6 Combine all sets 𝑠 to form a global set 𝑆 =

⋃𝐾
𝑖=1 𝑆

𝑖

7 Sort 𝑆 in ascending order and append 𝑧0 = 0, 𝑧3𝐾+1 = 1.
Obtain the sequence 𝑍 = {𝑧0, 𝑧1, ..., 𝑧3𝐾 , 𝑧3𝐾+1}

8 Initialize the parameter 𝑑𝑘 as 𝑧𝑘 for each 𝑘
9 while

∑3𝐾+1
𝑖=0 △𝑑𝑖 > 𝜖 do

10 for 𝑖 = 0 to 3𝐾 + 1 do
11 Calculate 𝜕𝐿

𝜕𝑑𝑖
using Equation (14) and Equation (15)

12 Update the 𝑑𝑖 using Equation (13)
13 end
14 end
15 Standardize 𝑑𝑖 to satisfy

∑3𝐾+1
𝑖=0 𝑑𝑖 = 0

16 Obtain the discrete mapping function 𝑔(·) by using
Equation (12)

17 Obtain the continuous calibration function 𝑔∗ (·) by solving
Equation (16)

18 for 𝑞 ∈ D do
19 Debias the model prediction with 𝑔∗ (·)
20 Add the predicted answer to Y
21 end
22 return Debiased Prediction Y

B DETAILS OF DATASET AND METRICS
B.1 Details of Datasets
Table 4 presents the statistical of benchmarks. The average answer
length of different options in each dataset is nearly identical, and
the distribution of label categories is balanced. This design min-
imizes the potential influence of other biases on the evaluation
results. Overall, the datasets exhibit a well-balanced difficulty distri-
bution and are thoughtfully constructed, ensuring a fair and robust
evaluation process.

B.2 Details of Metrics
B.2.1 Reference-FreeMetrics. Fleiss’s Kappa is a statistical measure
used to assess the reliability of agreement between multiple raters.
It is calculated using the formula:

𝐾 =
𝑃𝑜 − 𝑃𝑒
1 − 𝑃𝑒

(31)

where 𝑃𝑜 is the observed agreement among raters. 𝑃𝑒 is the expected
agreement by chance. The value of Kappa ranges from -1 to 1, where
values closer to 1 indicate strong agreement among raters, values
around 0 suggest no agreement beyond chance, and negative values
indicate systematic disagreement.
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Table 4: Statistics of benchmark datasets.

Datasets Total_num Avergae_Length Label_num Type Type_numprompt answer_a answer_b first second tie

RewardBench 2985 1771 667 658 1490 1495 0

Chat 358
Chat_Hard 456
Safety 739
Reasoning 1432

MTBench 3355 4039 1524 1512 1293 1282 780 Turn1 1689
Turn2 1666

PreferenceBench 1998 2485 886 893 980 1018 0 - -

Intraclass Correlation Coefficient (ICC) is a measure of reliability
that assesses the consistency or agreement of measurements made
by different raters or instruments. In this paper, we report two
specific Intraclass Correlation Coefficient (ICC) metrics: ICC(2,k)
and ICC(3,k). ICC(2,k) measures the consistency of ratings from
multiple raters for the same set of subjects under a random effects
model, while ICC(3,k) assesses the consistency of ratings from
specific and fixed raters for the same subjects under a fixed effects
model. Both are useful for measuring the reliability and consistency
of ratings.

The ICC(2,k) is calculated using the formula:

ICC(2, 𝑘) =
𝜎2
𝐵
− 𝜎2

𝑊

𝜎2
𝐵
+ (𝑘 − 1)𝜎2

𝑊

(32)

The ICC(3,k) is calculated using the formula:

ICC(3, 𝑘) =
𝜎2
𝐵
− 𝜎2

𝑊

𝜎2
𝐵
+ 𝑘 · 𝜎2

𝑊

(33)

where 𝜎2
𝐵
is the variance between the subjects. 𝜎2

𝑊
is the variance

within the subjects. 𝑘 is the number of raters.

B.2.2 Reference-based Metrics. The standard deviation of recalls
(RStd) quantifies the variability in recall scores across different
evaluations. It is calculated using the formula:

𝑅𝑆𝑡𝑑 =

√√√
1

𝑁 − 1

𝑁∑︁
𝑖=1

(
𝑅𝑖 − 𝑅

)2 (34)

where 𝑅𝑖 is the recall for the 𝑖-th evaluation. 𝑅 is the mean recall
across all evaluations. 𝑁 is the total number of evaluations.

Accuracy is a widely used evaluation metric that measures the
overall correctness of a model’s predictions:

Accuracy =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (35)

where 𝑇𝑃 represents the number of instances that are correctly
predicted as positive, while 𝑇𝑁 denotes the number of instances
that are correctly predicted as negative. Conversely, 𝐹𝑃 indicates the
number of instances that are incorrectly predicted as positive, and
𝐹𝑁 refers to the number of instances that are incorrectly predicted
as negative.

C MORE EVALUATION RESULT
In Table 5, we present the complete results of the reference-based
experimental metrics. On average, CalibraEval achieved better im-
provements in Rstd and accuracy. This indicates that CalibraEval
effectively reduces selection bias and enables the model to realize
its potential. By mitigating selection bias in the evaluation process,
CalibraEval contributes to achieving more accurate and reliable re-
sults, paving the way for further advancements in model calibration
and evaluation methodologies.

D THE DESIGN OF PROMPT
Table 6 presents all the prompts used in this paper. The default
prompt, employed in the main experiments, serves as the founda-
tional basis for assessing model performance. In the robustness
experiments, four distinct prompts are utilized to evaluate varia-
tions in model responses.
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Table 5: The complete results of reference-based metrics. We report the Standard Deviation of Recalls (RStd) and Accuracy
(Acc.), with the best results highlighted in bold. ↓ indicates that lower values correspond to better performance.

Model RewardBench MTBench PreferenceBench Average
Rstd ↓ Acc.(%) Rstd↓ Acc.(%) Rstd ↓ Acc.(%) Rstd ↓ Acc.(%)

Llama-3-8B 15.01 65.79 16.42 67.08 3.36 83.43 11.60 72.10
DI 15.61 66.35 9.42 66.79 4.03 83.45 9.69 72.20
CC 14.62 64.52 8.70 69.09 9.47 82.78 10.93 72.13
DC 13.79 66.31 20.86 64.60 2.90 83.65 12.52 71.52
Pride 7.51 66.54 11.64 70.63 4.35 83.24 7.83 73.47

CalibraEval 6.48 68.12 5.22 70.63 2.42 83.98 5.04 74.24
Llama-3.1-8B 17.93 64.96 14.73 67.58 6.65 77.54 13.10 70.03

DI 12.02 64.25 13.72 67.47 12.42 75.14 12.72 68.95
CC 8.43 65.39 6.75 65.09 6.31 77.91 7.16 69.49
DC 14.54 66.90 9.72 67.74 5.91 77.98 10.06 70.87
Pride 13.94 65.90 12.63 67.56 9.47 77.92 12.01 70.46

CalibraEval 6.88 67.11 6.67 67.86 6.19 78.64 6.58 71.20
Qwen-14B 11.63 63.14 17.24 65.61 11.99 80.68 13.62 69.81

DI 9.76 61.88 19.09 62.18 15.77 76.14 14.87 66.73
CC 7.01 60.21 26.47 58.21 7.03 78.41 13.50 65.61
DC 3.02 62.47 8.23 68.48 10.07 79.96 7.11 70.30
Pride 4.18 64.09 16.31 65.29 7.36 83.55 9.28 70.98

CalibraEval 2.72 64.25 6.26 68.64 5.12 83.88 4.70 72.26
Qwen-72B 4.01 87.20 5.76 81.32 2.54 90.12 4.10 86.21

DI 3.65 86.32 5.79 80.82 0.80 90.21 3.41 85.78
CC 7.72 85.74 4.72 81.05 5.41 89.30 5.95 85.36
DC 6.57 83.87 6.76 80.52 7.04 88.83 6.79 84.41
Pride 3.82 87.25 5.24 81.23 2.27 90.26 3.78 86.25

CalibraEval 0.94 88.06 4.99 81.25 0.69 90.71 2.21 86.67
ChatGPT 16.79 65.27 7.66 72.67 3.04 85.61 9.16 74.70

DI 7.22 65.24 7.01 69.84 9.82 83.94 8.02 73.01
CC 7.93 64.89 16.31 70.49 3.13 84.83 9.12 73.40
DC 11.40 66.89 20.23 68.67 5.81 82.68 12.48 72.75
Pride 8.54 66.36 6.01 72.86 3.51 85.68 6.02 74.97

CalibraEval 5.51 67.13 5.20 72.98 2.82 85.98 4.51 75.36
GPT4o 1.95 89.34 3.23 82.27 5.29 90.44 3.49 87.35
DI 3.91 88.64 2.24 82.26 4.49 90.46 3.55 87.12
CC 0.54 89.11 4.84 81.23 5.79 90.02 3.72 86.79
DC 1.84 87.84 3.57 81.93 5.99 88.22 3.80 86.00
Pride 1.68 89.38 3.84 82.10 5.24 90.47 3.60 87.32

CalibraEval 1.42 89.54 2.89 82.29 4.29 90.49 2.87 87.44

Table 6: Different promtp templates used in this paper

Default Prompt.
Given a question and two answers. Determine which one better answers the question. You only need to output A or B directly to
indicate which answer is better.
Prompt Variant One.
Please evaluate the quality of the responses to the question displayed below. Don’t provide your explanation, only output your final
verdict by strictly following this format: A if assistant A is better, B if assistant B is better.
Prompt Variant Two.
You are an advanced evaluator, and your task is to assess which response addresses the inquiry more effectively. Output A if response
A is better, or B if response B is better.
Prompt Variant Three.
Below is a query along with two different responses generated by AI assistants. Your task is to determine which response provides a
more accurate and helpful answer to the question posed. Don’t provide your explanation. Simply output A if response A is more
effective, or B if response B is more effective.
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